HDU 4063 线段与圆相交+最短路
Aircraft
Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 980    Accepted Submission(s): 228
In the game, player controls an aircraft in a 2D-space.
The mission is to drive the craft from starting point to terminal point.
The craft needs wireless signal to move.
A number of devices are placed in the 2D-space, spreading signal.
For a device Di, it has a signal radius -- Ri.
When the distance between the craft and Di is shorter or equal to Ri, it(the craft) gets Di's wireless signal.
Now you need to tell me the shortest path from starting point to terminal point.
The rest of the test file contains T blocks.
Each block starts with an integer n, followed by n devices given as (xi, yi, Ri).
(xi, yi) is position of Di, and Ri is the radius of its signal range.
The first point is the starting point.
The last point is the terminal point.
T <= 25;
2 <= n <= 20 for most cases;
20 < n <= 25 for several cases, completely random generated.
-1000 <= xi, yi <= 1000 , 1 <= ri <= 1000.
All are integers.
Otherwise, output a float number, correct the result to 4 decimal places.(as shown in the sample output)
2
2
0 0 1
2 0 1
2
0 0 1
4 1 2
Case 1: 2.0000
Case 2: No such path.
给定n个圆,求从第一个圆到最后一个圆的最短路,要求路径全然包括在圆的覆盖下。
一開始以为圆与圆之间的处理必须经过圆心。无数的wa,苦苦找不到问题。一神牛提供了一组强大的数据,最终发现了问题。
把圆与圆相交全部交点找出来,排序,去重。然后枚举全部线段,找出线段与圆的全部交点,排序。去重,然后枚举每一段线段是否被某一个圆覆盖。假设不满足,直接
跳出,然后就是最短路的处理,连最短路也不会写了,直接堆了一个spfa,300+行代码,总算1Y了,泪目呀。。。。
代码:
/* ***********************************************
Author :rabbit
Created Time :2014/7/3 22:46:38
File Name :2.cpp
************************************************ */
#pragma comment(linker, "/STACK:102400000,102400000")
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <sstream>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <string>
#include <time.h>
#include <math.h>
#include <queue>
#include <stack>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define eps 1e-6
#define pi acos(-1.0)
typedef long long ll;
int dcmp(double x){
if(fabs(x)<eps)return 0;
return x>0?1:-1;
}
struct Point{
double x,y;
Point(double _x=0,double _y=0){
x=_x;y=_y;
}
};
Point operator + (Point a,Point b){
return Point(a.x+b.x,a.y+b.y);
}
Point operator - (Point a, Point b){
return Point(a.x-b.x,a.y-b.y);
}
Point operator * (Point a,double p){
return Point(a.x*p,a.y*p);
}
Point operator / (Point a,double p){
return Point(a.x/p,a.y/p);
}
bool operator < (const Point &a,const Point &b){
return a.x<b.x||(a.x==b.x&&a.y<b.y);
}
bool operator == (const Point &a,const Point &b){
return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0;
}
double Dot(Point a, Point b){
return a.x*b.x+a.y*b.y;
}
double Length(Point a){
return sqrt(Dot(a,a));
}
double Angle(Point a,Point b){
return acos(Dot(a,b)/Length(a)/Length(b));
}
double angle(Point a){
return atan2(a.y,a.x);
}
double Cross(Point a,Point b){
return a.x*b.y-a.y*b.x;
}
Point vecnit(Point x){
return x/Length(x);
}
Point normal(Point x){
return Point(-x.y,x.x)/Length(x);
}
Point Rotate(Point a,double rad){
return Point(a.x*cos(rad)-a.y*sin(rad),a.x*sin(rad)+a.y*cos(rad));
}
Point GetLineIntersection(Point p,Point v,Point q,Point w){
Point u=p-q;
double t=Cross(w,u)/Cross(v,w);
return p+v*t;
}
struct Line{
Point p,v;
double ang;
Line(){};
Line(Point _p,Point _v):p(_p),v(_v){
ang=atan2(v.y,v.x);
}
Point point(double a){
return p+(v*a);
}
bool operator < (const Line &L)const{
return ang<L.ang;
}
};
Point GetLineIntersection(Line a,Line b){
return GetLineIntersection(a.p,a.v,b.p,b.v);
}
bool OnLeft(const Line &L,const Point &p){
return Cross(L.v,p-L.p)>=0;
}
vector<Point> HPI(vector<Line> L){
int n=L.size();
sort(L.begin(),L.end());
int first,last;
vector<Point> p(n);
vector<Line> q(n);
vector<Point> ans;
q[last=first=0]=L[0];
for(int i=1;i<n;i++){
while(first<last&&!OnLeft(L[i],p[last-1]))last--;
while(first<last&&!OnLeft(L[i],p[first]))first++;
q[++last]=L[i];
if(fabs(Cross(q[last].v,q[last-1].v))<eps){
last--;
if(OnLeft(q[last],L[i].p))q[last]=L[i];
}
if(first<last)p[last-1]=GetLineIntersection(q[last-1],q[last]);
}
while(first<last&&!OnLeft(q[first],p[last-1]))last--;
if(last-first<=1)return ans;
p[last]=GetLineIntersection(q[last],q[first]);
for(int i=first;i<=last;i++)ans.push_back(p[i]);
return ans;
}
double getarea(vector<Point> p){
double ans=0;
int n=p.size();
for(int i=0;i<n;i++)
ans+=Cross(p[i],p[(i+1)%n]);
return fabs(ans)/2;
}
bool getdir(vector<Point> p){
double ans=0;
int n=p.size();
for(int i=0;i<n;i++)
ans+=Cross(p[i],p[(i+1)%n]);
if(dcmp(ans)>0)return 1;
return 0;
}
struct Circle{
Point c;
double r;
Circle(){}
Circle(Point _c,double _r):c(_c),r(_r){}
Point point(double a){
return Point(c.x+cos(a)*r,c.y+sin(a)*r);
}
};
bool OnSegment(Point p,Point a1,Point a2){
return dcmp(Cross(a1-p,a2-p))==0&&dcmp(Dot(a1-p,a2-p))<=0;
}
int getSegCircleIntersection(Line L, Circle C, Point* sol)
{
Point nor = normal(L.v);
Line pl = Line(C.c, nor);
Point ip = GetLineIntersection(pl, L);
double dis = Length(ip - C.c);
if (dcmp(dis - C.r) > 0) return 0;
Point dxy = vecnit(L.v) * sqrt(C.r*C.r-dis*dis);
int ret = 0;
sol[ret] = ip + dxy;
if (OnSegment(sol[ret], L.p, L.point(1))) ret++;
sol[ret] = ip - dxy;
if (OnSegment(sol[ret], L.p, L.point(1))) ret++;
return ret;
}
int getCircleCircleIntersection(Circle c1,Circle c2,vector<Point> &sol){
double d=Length(c1.c-c2.c);
if(dcmp(d)==0){
if(dcmp(c1.r-c2.r)==0)return -1;
return 0;
}
if(dcmp(c1.r+c2.r-d)<0)return 0;
if(dcmp(fabs(c1.r-c2.r)-d)>0)return 0;
double a=angle(c2.c-c1.c);
double da=acos((c1.r*c1.r+d*d-c2.r*c2.r)/(2*c1.r*d));
Point p1=c1.point(a-da),p2=c1.point(a+da);
sol.push_back(p1);
if(p1==p2)return 1;
sol.push_back(p2);
return 2;
}
bool InCircle(Point x,Circle c){
return dcmp(c.r-Length(c.c-x))>=0;
}
Point pp[50],p1[10010];
double R[50],dist[1010][1010],dis[1010];
int tot;
int head[1010],tol,vis[1910];
struct Edge{
int next,to;
double val;
}edge[1001000];
void addedge(int u,int v,double val){
edge[tol].to=v;
edge[tol].next=head[u];
edge[tol].val=val;
head[u]=tol++;
}
double spfa(int s,int t){
memset(vis,0,sizeof(vis));queue<int> q;
for(int i=0;i<tot;i++){
if(i==s){
vis[i]=1;
dis[i]=0;
q.push(i);
}
else dis[i]=INF;
}
while(!q.empty()){
int u=q.front();
q.pop();
vis[u]=0;
for(int i=head[u];i!=-1;i=edge[i].next){
int v=edge[i].to;
if(dis[v]>dis[u]+edge[i].val){
dis[v]=dis[u]+edge[i].val;
if(vis[v]==0){
vis[v]=1;
q.push(v);
}
}
}
}
// cout<<"gg: "<<endl;
//cout<<"tot="<<tot<<endl;
// for(int i=0;i<tot;i++)cout<<dis[i]<<" ";cout<<endl;
if(dis[t]<INF)return dis[t];
return -1;
}
int main()
{
int T,n;
// freopen("data.in","r",stdin);
// freopen("data.out","w",stdout);
scanf("%d",&T);
for(int t=1;t<=T;t++){
scanf("%d",&n);
for(int i=0;i<n;i++)
scanf("%lf%lf%lf",&pp[i].x,&pp[i].y,&R[i]);
printf("Case %d: ",t);
tot=0;
for(int i=0;i<n;i++)p1[tot++]=pp[i];
for(int i=0;i<n;i++)
for(int j=i+1;j<n;j++){
vector<Point> sol;
int ret=getCircleCircleIntersection(Circle(pp[i],R[i]),Circle(pp[j],R[j]),sol);
for(int k=0;k<ret;k++)
p1[tot++]=sol[k];
}
sort(p1,p1+tot);
tot=unique(p1,p1+tot)-p1;
for(int i=0;i<1000;i++){
dist[i][i]=0;
for(int j=i+1;j<1000;j++)
dist[i][j]=dist[j][i]=INF;
}
for(int i=0;i<tot;i++)
for(int j=i+1;j<tot;j++){
Point tt[100],sol[3];
int hh=0;
for(int k=0;k<n;k++){
int ret=getSegCircleIntersection(Line(p1[i],p1[j]-p1[i]),Circle(pp[k],R[k]),sol);
for(int d=0;d<ret;d++)
tt[hh++]=sol[d];
}
tt[hh++]=p1[i];
tt[hh++]=p1[j];
sort(tt,tt+hh);
hh=unique(tt,tt+hh)-tt;
int ff=1;
for(int d=0;d<hh-1;d++){
int flag=0;
for(int e=0;e<n;e++)
if(InCircle(tt[d],Circle(pp[e],R[e]))&&InCircle(tt[d+1],Circle(pp[e],R[e]))){
flag=1;break;
}
if(!flag){
ff=0;break;
}
}
if(ff)dist[i][j]=dist[j][i]=Length(p1[i]-p1[j]);
}
// cout<<"tot="<<tot<<endl;
// for(int i=0;i<tot;i++)cout<<p1[i].x<<" "<<p1[i].y<<endl;
// for(int i=0;i<tot;i++){
// for(int j=0;j<tot;j++)cout<<dist[i][j]<<" ";
// cout<<endl;
// }
int start,end;
for(int i=0;i<tot;i++){
if(p1[i]==pp[0])start=i;
if(p1[i]==pp[n-1])end=i;
}
// cout<<"han "<<start<<" "<<end<<endl;
memset(head,-1,sizeof(head));tol=0;
for(int i=0;i<tot;i++)
for(int j=i+1;j<tot;j++)
if(dist[i][j]<INF){
addedge(i,j,dist[i][j]);
addedge(j,i,dist[i][j]);
}
// cout<<"tol="<<tol<<endl;
double ans=spfa(start,end);
if(ans==-1)puts("No such path.");
else printf("%.4f\n",ans);
}
return 0;
}
HDU 4063 线段与圆相交+最短路的更多相关文章
- hdu4063(圆与圆交+线段与圆交+最短路)
		
写几何题总是提心吊胆.精度问题真心吓人. 其实思路挺简单的一道题,真是什么算法和几何double搞到一块,心里就虚虚的. 思路:求出所有圆之间的交点,然后用这些交点跑一遍最短路就可以了. Aircra ...
 - hdu 5120 (求两圆相交的面积
		
题意:告诉你两个圆环,求圆环相交的面积. /* gyt Live up to every day */ #include<cstdio> #include<cmath> #in ...
 - luogu 1354 房间最短路问题 线段与直线相交 最短路
		
题目链接 题目描述 在一个长宽均为10,入口出口分别为(0,5).(10,5)的房间里,有几堵墙,每堵墙上有两个缺口,求入口到出口的最短路经. 输入输出格式 输入格式: 第一排为n(n<=20) ...
 - HDU 4063 Aircraft --几何,最短路
		
题意: 给一些圆,要求从第一个圆的圆心走到最后一个圆的圆心,中间路径必须在某个圆内,求最短路径的长度. 解法: 易知要保持在圆内且路径最短,走两圆相交的点能使路径尽量短,所以我们找出所有的两圆相交的点 ...
 - HDU 3264 Open-air shopping malls (计算几何-圆相交面积)
		
传送门:http://acm.hdu.edu.cn/showproblem.php?pid=3264 题意:给你n个圆,坐标和半径,然后要在这n个圆的圆心画一个大圆,大圆与这n个圆相交的面积必须大于等 ...
 - POJ_1556_The Doors_判断线段相交+最短路
		
POJ_1556_The Doors_判断线段相交+最短路 Description You are to find the length of the shortest path through a ...
 - 【BZOJ 1033】 [ZJOI2008]杀蚂蚁antbuster(判断线段是否和圆相交)
		
[题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1033 [题意] https://www.zybuluo.com/Jerusalem/n ...
 - HDU 1558 Segment set (并查集+线段非规范相交)
		
题目链接 题意 : 如果两个线段相交就属于同一集合,查询某条线段所属集合有多少线段,输出. 思路 : 先判断与其他线段是否相交,然后合并. #include <cstdio> #inclu ...
 - HDU 3467 (求五个圆相交面积) Song of the Siren
		
还没开始写题解我就已经内牛满面了,从晚饭搞到现在,WA得我都快哭了呢 题意: 在DotA中,你现在1V5,但是你的英雄有一个半径为r的眩晕技能,已知敌方五个英雄的坐标,问能否将该技能投放到一个合适的位 ...
 
随机推荐
- 关于PHP写的投票网站之刷票风云
			
最近学校导航站找我让我给他们做一个投票系统的网站,我一口答应了,他们只是要求不准刷票情况出现,我也一口答应了..我答应的太干脆了. 然后我便开始做这个网站,网站做出来没花太多时间,并且我是用IP来判断 ...
 - UVA 10026 Shoemaker's Problem 鞋匠的难题 贪心+排序
			
题意:鞋匠一口气接到了不少生意,但是做鞋需要时间,鞋匠只能一双一双地做,根据协议每笔生意如果拖延了要罚钱. 给出每笔生意需要的天数和每天的罚钱数,求出最小罚钱的排列顺序. 只要按罚款/天数去从大到小排 ...
 - 微信小程序 - 自定义swiper(dot)指示点
			
点击下载示例:自定义swiper(dot)指示点
 - es6-块级作用域let 和 var的区别
			
块级绑定 js的处理机制和我们大家想象的完全不同,并不完全是所谓函数调用以及上下执行那样简单,它是存有”域”的本质区别的. var具有全局污染特性,所以es6才会出现let .const. 下面通过一 ...
 - C# 编程实现串口通信
			
http://blog.sina.com.cn/s/blog_6c67dab30101p3vn.html ----------------------------------------------- ...
 - 算法笔记_120:蓝桥杯第六届省赛(Java语言B组部分习题)试题解答
			
目录 1 三角形面积 2 立方变自身 3 三羊献瑞 4 九数组分数 5 饮料换购 6 生命之树 前言:以下试题解答代码部分仅供参考,若有不当之处,还请路过的同学提醒一下~ 1 三角形面积 三角形 ...
 - Banner尺寸多大最好!
			
关于网站图片的大小问题 最近发现各大网站的图片做的都很大 随笔找了一个,下载其页面banner, 详细属性:基本全是1920*高.Get√
 - JDBC的简单操作
			
JDBC是一组能够执行SQL语句的API 由于传统的数据库操作方式需要程序员掌握各个不同的数据库的API,极其不便 因此java定义了JDBC这一标准的接口和类,为程序员操作数据库提供了统一的方式 J ...
 - ng-src 的坑
			
问题: <ion-slide ng-repeat="item in bannrImgData" ng-click="getActivity($index)" ...
 - poj 4014 Dice 贪心
			
//poj 4014 //sep9 #include <iostream> #include <algorithm> using namespace std; int n; s ...