CF1017G The Tree 树链剖分
CF1017G The Tree
树链剖分好题。
乍一看还以为是道沙比题,然后发现修改操作有点不一样。
但是如果你对基本操作还不太熟练,可以看看我的树链剖分总结
有三个操作:
- 从一个点往下染黑,是黑色节点就继续染,一直染到白色节点为止;
- 染白一棵子树;
- 查询一个点的颜色。
主要是第一个操作不好处理。由于每次只询问一个点的信息,考虑把一个点的颜色用从根节点到这个点的最大后缀和来表达:最大后缀和小于零则为白色,反之则为黑色。首先把树上每一个点的权值都定为\(-1\),对于每个1操作,把该点的权值++;对于每个2操作,把一棵子树的权值全都变成\(-1\),并在该子树的根节点减去一个权值,使得大树根节点到子树根节点的最大后缀和恰为\(-1\);对于3查询,查询一个根节点到这个点的最大后缀和,\(<0\)白色,\(\ge 0\)黑色。可以证(shou)明(wan),这样做正确地在\(O(n(log n)^2)\)的复杂度内维护了树上的信息。
如果你不会在树上维护最大后缀和,可以先考虑在区间上维护,用线段树维护一个区间和、一个区间最大后缀和就好了,合并信息的方法就很容易看出了,查询的时候也可以用同样的方法合并,放到树上来之后合并的方法还是没有变。
#include<cstdio>
#include<cctype>
#define R register
#define I inline
using namespace std;
const int S=200003,M=800003,inf=0x3f3f3f3f;
char buf[1000000],*p1,*p2;
I char gc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,S,stdin),p1==p2)?EOF:*p1++;}
I int rd(){
R int f=0; R char c=gc();
while(c<48||c>57) c=gc();
while(c>47&&c<58) f=f*10+(c^48),c=gc();
return f;
}
struct O{int f,g;};
struct N{int f,g,b;}a[M];
int h[S],s[S],g[S],d[S],t[S],p[S],q[S],r[S],f[S],c,e,n;
I int max(int x,int y){return x>y?x:y;}
O operator+(O x,O y){return (O){max(x.f+y.g,y.f),x.g+y.g};}
I void add(int x,int y){s[++c]=h[x],h[x]=c,g[c]=y;}
I void upd(int k,int l,int r){a[k].f=-1,a[k].g=-(r-l+1),a[k].b=1;}
I void psu(int k,int p,int q){a[k].f=max(a[q].f,a[p].f+a[q].g),a[k].g=a[p].g+a[q].g;}
I void psd(int k,int l,int r){
if(a[k].b){
R int p=k<<1,q=p|1,m=l+r>>1;
upd(p,l,m),upd(q,m+1,r),a[k].b=0;
}
}
void bld(int k,int l,int r){
if(l==r){a[k].f=a[k].g=-1; return ;}
R int p=k<<1,q=p|1,m=l+r>>1;
bld(p,l,m),bld(q,m+1,r),psu(k,p,q);
}
void mdf1(int k,int l,int r,int x,int v){
if(l==r){a[k].f+=v,a[k].g+=v; return ;}
R int p=k<<1,q=p|1,m=l+r>>1;
psd(k,l,r);
if(x<=m) mdf1(p,l,m,x,v);
else mdf1(q,m+1,r,x,v);
psu(k,p,q);
}
void mdf2(int k,int l,int r,int x,int y){
if(x<=l&&r<=y){upd(k,l,r); return ;}
R int p=k<<1,q=p|1,m=l+r>>1;
psd(k,l,r);
if(x<=m) mdf2(p,l,m,x,y);
if(m<y) mdf2(q,m+1,r,x,y);
psu(k,p,q);
}
O qry(int k,int l,int r,int x,int y){
if(x<=l&&r<=y) return (O){a[k].f,a[k].g};
R int p=k<<1,q=p|1,m=l+r>>1;
O o=(O){-inf,0};
psd(k,l,r);
if(x<=m) o=o+qry(p,l,m,x,y);
if(m<y) o=o+qry(q,m+1,r,x,y);
return o;
}
void dfs1(int x,int f){
d[x]=d[f]+1,p[x]=f,t[x]=1;
for(R int i=h[x],y,m=0;i;i=s[i])
if((y=g[i])^f){
dfs1(y,x),t[x]+=t[y];
if(t[y]>m) q[x]=y,m=t[y];
}
}
void dfs2(int x,int t){
f[x]=++e,r[x]=t;
if(q[x]) dfs2(q[x],t);
for(R int i=h[x],y;i;i=s[i])
if((y=g[i])^p[x]&&y^q[x])
dfs2(y,y);
}
I int qry0(int x){
R int o=-inf,v=0; O u;
while(x)
u=qry(1,1,n,f[r[x]],f[x]),o=max(o,u.f+v),v+=u.g,x=p[r[x]];
return o;
}
int main(){
R int Q,i,x,y;
for(n=rd(),Q=rd(),i=2;i<=n;++i)
x=rd(),add(x,i);
dfs1(1,0),dfs2(1,1),bld(1,1,n);
for(i=1;i<=Q;++i){
x=rd(),y=rd();
if(x==1)
mdf1(1,1,n,f[y],1);
if(x==2)
mdf2(1,1,n,f[y],f[y]+t[y]-1),mdf1(1,1,n,f[y],-(qry0(y)+1));
if(x==3)
qry0(y)>=0?printf("black\n"):printf("white\n");
}
return 0;
}
跑的还算快。
CF1017G The Tree 树链剖分的更多相关文章
- [CF1017G]The Tree[树链剖分+线段树]
题意 给一棵一开始 \(n\) 个点全是白色的树,以 \(1\) 为根,支持三种操作: 1.将某一个点变黑,如果已经是黑色则该操作对所有儿子生效. 2.将一棵子树改成白色. 3.询问某个点的颜色. \ ...
- Hdu 5274 Dylans loves tree (树链剖分模板)
Hdu 5274 Dylans loves tree (树链剖分模板) 题目传送门 #include <queue> #include <cmath> #include < ...
- POJ3237 Tree 树链剖分 边权
POJ3237 Tree 树链剖分 边权 传送门:http://poj.org/problem?id=3237 题意: n个点的,n-1条边 修改单边边权 将a->b的边权取反 查询a-> ...
- Query on a tree——树链剖分整理
树链剖分整理 树链剖分就是把树拆成一系列链,然后用数据结构对链进行维护. 通常的剖分方法是轻重链剖分,所谓轻重链就是对于节点u的所有子结点v,size[v]最大的v与u的边是重边,其它边是轻边,其中s ...
- 【BZOJ-4353】Play with tree 树链剖分
4353: Play with tree Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 31 Solved: 19[Submit][Status][ ...
- SPOJ Query on a tree 树链剖分 水题
You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, ...
- poj 3237 Tree 树链剖分
题目链接:http://poj.org/problem?id=3237 You are given a tree with N nodes. The tree’s nodes are numbered ...
- Codeforces Round #200 (Div. 1) D Water Tree 树链剖分 or dfs序
Water Tree 给出一棵树,有三种操作: 1 x:把以x为子树的节点全部置为1 2 x:把x以及他的所有祖先全部置为0 3 x:询问节点x的值 分析: 昨晚看完题,马上想到直接树链剖分,在记录时 ...
- poj 3237 Tree 树链剖分+线段树
Description You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edg ...
随机推荐
- 通过runtime获取对象相关信息
通过runtime获取对象相关信息 在这里,本人给大家提供一个runtime关于NSObject的扩展,用来显示各种NSObject中的信息,这有助于你来分析类的组成:) 先准备以下类供测试: Mod ...
- Celery学习--- Celery操作之定时任务
celery支持定时任务,设定好任务的执行时间,celery就会定时自动帮你执行, 这个定时任务模块叫celery beat 文件定时执行任务 项目前提: 安装并启动Redis celery_Sche ...
- 铁乐学python_Day43_协程
铁乐学python_Day43_协程 引子 之前我们学习了线程.进程的概念,了解了在操作系统中进程是资源分配的最小单位,线程是CPU调度的最小单位. 按道理来说我们已经算是把cpu的利用率提高很多了. ...
- RabbitMQ学习以及与Spring的集成(二)
本文介绍RabbitMQ的一些基本概念. RabbitMQ服务可以安装在独立服务器上,通过配置的账户和ip访问使用.也就是说,RabbitMQ和使用它的应用可以部署在不同的服务器上.RabbitMQ的 ...
- CSS控制图片和文字在同一行显示且对齐的3种方法
CSS控制图片和文字在同一行显示且对齐的3种方法 在 HTML 代码中,有时会需要在文字旁边加上一个图标. 默认情况,是图片置顶对齐,文字置底对齐,所以通常图片高,文字低,不能水平居中对齐. 常见方法 ...
- mysqldump.md
mysqldump命令 选项 -A, --all-databases:导出全部数据库 -Y, --all-tablespaces:导出全部表空间. -y, --no-tablespaces:不导出任何 ...
- Hadoop学习之路(五)Hadoop集群搭建模式和各模式问题
分布式集群的通用问题 当前的HDFS和YARN都是一主多从的分布式架构,主从节点---管理者和工作者 问题:如果主节点或是管理者宕机了.会出现什么问题? 群龙无首,整个集群不可用.所以在一主多从的架构 ...
- [消息传输123]ActiveMQ
http://www.uml.org.cn/zjjs/201802111.asp https://www.cnblogs.com/cyfonly/p/6380860.html
- 集合之hascode方法
在前面三篇博文中LZ讲解了(HashMap.HashSet.HashTable),在其中LZ不断地讲解他们的put和get方法,在这两个方法中计算key的hashCode应该是最重要也是最精华的部分, ...
- ZooKeeper分布式专题与Dubbo微服务入门
第1章 分布式系统概念与ZooKeeper简介对分布式系统以及ZooKeeper进行简介,使得大家对其有大致的了解1-1 zookeeper简介1-2 什么是分布式系统1-3 分布式系统的瓶颈以及zk ...