题目链接:HDU  4635

题目大意:

给你一个有向图,加有向边,使得这个图是简单有向图。问你最多加多少条有向边。

简单有向图:

1、不存在有向重边。

2、不存在图循环。(注意是不存在 “图” 循环,就是不能使整个图成为 “强连通图” 。意思是可以存在环,但不能是全图循环。同样,两个点之间可以有两条相反有向边。)

分析:

1、如果我要加最多的边,全图仍然不为 “强连通图” 。那么最多的情况就是,有两个巨大的环,他们之前有且仅有一条有向边。故先进行 “有向图缩点” ,先从 小环 开始分析。

2、加边加到最后,一定存在仅剩的两个超级点 X 与 Y ,且 X 与 Y 之间有且仅有一条有向边。这样可以使得 X Y 分处两个最大环。

3、缩点加边到最后,X 与 Y 一定是 X → Y 或者 Y → X 的,所以作为 X Y 的前提条件是, 入度为 0 或者出度为 0 。(重点)

4、其次,X 与 Y 是两个最大有向环,那么我们可以使 X 或 Y 变成完全图,就可以继续加边而且不会导致全图变成 “强连通图” ,因为 X 与 Y 中间始终仅有一条有向边。

5、假设 X Y 之间有 : X → Y ,则我使 X 中的所有节点 ,全部以 → 有向边连接 Y 中的所有节点,也不会使得全图变为 “强连通图” ,故我还可以这样加边。(注意,连的边一定要与 X 到 Y 之间的有向边同向,否则就变成环了)

通过以上分析我们可以知道思路:

假设 X 的节点数为 x ,Y 的节点数为 y 。

1、以 X 为完全图时,X 中的有向边数最多为: x * (x - 1)

2、以 Y 为完全图时,Y 中的有向边数最多为: y * (y - 1)

3、X 中的全部节点以同一种有向边连接 Y 的全部节点,边数: x * y

4、由于给了 m 条边,故只需要加 x * (x - 1)+ y * (y - 1)+ x * y - m 条边即可。

将上面的 x * (x - 1)+ y * (y - 1)+ x * y - m x + y = n 联立得:

加的边数为:n2 - x * y - n - m

故我们只需要使 x * y 最小即可。而由于 x + y = n ,是定值,所以 x * y 的最小值即 x 的最小值 乘以 y (y = n - x) 。

由于 X 与 Y 是入度或出度为 0 的点,故只要找出这类缩点后的超级点中,点的个数最小的作为 X 点,X 自身成为完全图,不需要加别的点。然后剩下的所有点与 Y 点一同成为完全图即可。这要就可以保证 x 最小了。

代码如下:

#include<iostream>
#include<algorithm>
#include<string.h>
#include<queue>
#define maxn 100008
using namespace std;
typedef long long ll;
int cnt, Index, tot, sum;
int head[maxn], low[maxn], dfn[maxn], q[maxn];
int in[maxn],out[maxn];
int qhead[maxn];
bool vis[maxn];
int pre[maxn];
ll ans[maxn],n,m;
struct Edge
{
int to;
int next;
}edge[maxn << ];
inline void add(int u, int v)
{
edge[++cnt].to = v;
edge[cnt].next = head[u];
head[u] = cnt;
return;
}
inline void tarjan(int u)
{
low[u] = dfn[u] = ++Index;
q[++tot] = u;
vis[u] = true;
for (int i = head[u]; i; i = edge[i].next)
{
int v = edge[i].to;
if (!dfn[v]) {
tarjan(v);
low[u] = min(low[u], low[v]);
}
else if (vis[v]) low[u] = min(low[u], dfn[v]);
}
if (low[u] == dfn[u])
{
++sum;
do {
ans[sum]++;
pre[q[tot]] = sum;
vis[q[tot--]] = false;
} while (q[tot + ] != u);
}
return;
}
void init()
{
cnt=Index=tot=sum=;
for(int i=;i<=n;i++) dfn[i]=vis[i]=head[i]=qhead[i]=ans[i]=in[i]=out[i]=;
memset(edge,,sizeof(edge));
return;
}
int main()
{
int t;
scanf("%d",&t);
int T=;
while(t--){
init();
scanf("%lld%lld", &n, &m);
int A, B;
for (int i = ; i <= m; i++) {
scanf("%d%d", &A, &B);
add(A, B);
}
for (int i = ; i <= n; i++) {
if (!dfn[i]) tarjan(i);
}
if(sum==){ printf("Case %d: -1\n",++T ); continue;}
cnt = ;
for (int i = ; i <= n; i++) {
for (int j = head[i]; j; j = edge[j].next) {
int v = edge[j].to;
if (pre[i] != pre[v]){
in[pre[v]]++,out[pre[i]]++;
}
}
}
ll res=0x3f3f3f3f;
for(int i=;i<=sum;i++){
if(in[i]==||out[i]==){
res=min(res,ans[i]);
}
}
res=1ll*n*n-n-m-res*(n-res);
printf("Case %d: %lld\n",++T,res );
}
}

HDU 4635 (完全图 和 有向图缩点)的更多相关文章

  1. hdu 4635 Strongly connected 强连通缩点

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4635 题意:给你一个n个点m条边的图,问在图不是强连通图的情况下,最多可以向图中添多少条边,若图为原来 ...

  2. Strongly connected HDU - 4635(判断强连通图 缩点)

    找出强联通块,计算每个连通块内的点数.将点数最少的那个连通块单独拿出来,其余的连通块合并成一个连通分量. 那么假设第一个连通块的 点数是 x  第二个连通块的点数是 y 一个强连通图(每两个点之间,至 ...

  3. hdu 3072 有向图缩点成最小树形图计算最小权

    题意,从0点出发,遍历所有点,遍历边时候要付出代价,在一个SCC中的边不要付费.求最小费用. 有向图缩点(无需建立新图,,n<=50000,建则超时),遍历边,若不在一个SCC中,用一个数组更新 ...

  4. hdu 1827 有向图缩点看度数

    题意:给一个有向图,选最少的点(同时最小价值),从这些点出发可以遍历所有. 思路:先有向图缩点,成有向树,找入度为0的点即可. 下面给出有向图缩点方法: 用一个数组SCC记录即可,重新编号,1.... ...

  5. HDU 4635 —— Strongly connected——————【 强连通、最多加多少边仍不强连通】

    Strongly connected Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u ...

  6. HDU 4635 Strongly connected (强连通分量)

    题意 给定一个N个点M条边的简单图,求最多能加几条边,使得这个图仍然不是一个强连通图. 思路 2013多校第四场1004题.和官方题解思路一样,就直接贴了~ 最终添加完边的图,肯定可以分成两个部X和Y ...

  7. HDU 4635 - Strongly connected(2013MUTC4-1004)(强连通分量)

    t这道题在我们队属于我的范畴,最终因为最后一个环节想错了,也没搞出来 题解是这么说的: 最终添加完边的图,肯定可以分成两个部X和Y,其中只有X到Y的边没有Y到X的边,那么要使得边数尽可能的多,则X部肯 ...

  8. hdu 4635 Strongly connected(Tarjan)

    做完后,看了解题报告,思路是一样的.我就直接粘过来吧 最终添加完边的图,肯定可以分成两个部X和Y,其中只有X到Y的边没有Y到X的边,那么要使得边数尽可能的多,则X部肯定是一个完全图,Y部也是,同时X部 ...

  9. HDU 4635 Strongly connected (Tarjan+一点数学分析)

    Strongly connected Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) ...

随机推荐

  1. c++指针经典题目分析

    首先看一下题目,下列程序会在那一行崩溃,程序如下: #include<iostream> using namespace std; struct S{ int i; int *p; }; ...

  2. Nginx Location匹配顺序

    理论部分 文字释义匹配规则如下: 略述: 1.nginx服务器首先在server块的多个location块中搜索是否有标准的uri和请求字符串匹配.如果有多个标准uri可以匹配,就匹配其中匹配度最高的 ...

  3. 如何用ModelSim对Xilinx ISE产生的网表进行仿真

    图: 在对设计的芯片进行测试时,经常要用到FPGA,可是里面的仿真工具却不如Modelsim那么好用,且在规模比较大时,ISE在仿真时,软件经常会报告内存限制的问题,此时一般会切换到Modelsim软 ...

  4. 2017《java技术预备作业》

    2017<java技术预备作业> 1.阅读邹欣老师的博客,谈谈你期望的师生关系是什么样的? 亦师亦友,很多人这样说,确实,倘若师生之间如果中间有些隔阂最终吃亏的始终是学生.我认为师生之间应 ...

  5. bzoj 1082: [SCOI2005]栅栏 题解

    1082: [SCOI2005]栅栏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2340  Solved: 991[Submit][Status] ...

  6. Java 新特性总结——简单实用

    lambda表达式 简介 lambda 表达式的语法 变量作用域 函数式接口 内置函数式接口 默认方法 Stream(流) 创建 stream Filter(过滤) Sorted(排序) Map(映射 ...

  7. 洛谷P2285 【[HNOI2004]打鼹鼠】

    每次打鼹鼠的机器人总是从某一次打鼹鼠的地方走过来的 对鼹鼠出现时间从小到大排序 f[i]表示到第i个鼹鼠(打第i个)最多能打多少个鼹鼠 f[i]=max(f[j]+1)f[i]=max(f[j]+1) ...

  8. FFT中的一个常见小问题(递推式)

    FFT中的一个常见小问题这里不细说FFT的内容,详细内容看这些就足以了解大概了小学生都能看懂的FFT!!!FFT详解补充——FFT中的二进制翻转问题主要是对学习过程中一个容易困扰的小问题进行解释,以便 ...

  9. C#各版本新增加功能

    本系列文章主要整理并介绍 C# 各版本的新增功能. C# 8.0 C#8.0 于 2019年4月 随 .NET Framework 4.8 与 Visual Studio 2019 一同发布,但是当前 ...

  10. linux中type 、file、stat三者的区别

    1.type 用来查看命令类型,以区别是内部命令还是外部命令 示例:[root@localhost ~]# type cd cd 是 shell 内嵌    [root@localhost ~]# t ...