森林

考虑到题目中给出条件两点间至多只有一条路径。

就可以发现,这是一个森林。

而森林有一个很有用的性质。

考虑对于一棵树,点数-边数=\(1\)。

因此对于一个森林,点数-边数=连通块个数。

所以,我们只要前缀和求出询问区间内的点数和边数,就可以计算出连通块个数了。

注意边数要分两个方向讨论,然后询问时注意防止越界。

代码

#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 2000
using namespace std;
int n,m,Qt,a[N+5][N+5];
class FastIO
{
private:
#define FS 100000
#define tc() (A==B&&(B=(A=FI)+fread(FI,1,FS,stdin),A==B)?EOF:*A++)
#define pc(c) (C==E&&(clear(),0),*C++=c)
#define tn (x<<3)+(x<<1)
#define D isdigit(c=tc())
int T;char c,*A,*B,*C,*E,FI[FS],FO[FS],S[FS];
public:
I FastIO() {A=B=FI,C=FO,E=FO+FS;}
Tp I void read(Ty& x) {x=0;W(!D);W(x=tn+(c&15),D);}
Tp I void readD(Ty& x) {W(!D);x=c&15;}
Tp I void write(Ty x) {W(S[++T]=x%10+48,x/=10);W(T) pc(S[T--]);}
Tp I void writeln(Con Ty& x) {write(x),pc('\n');}
I void clear() {fwrite(FO,1,C-FO,stdout),C=FO;}
}F;
class SuffixSumSolver
{
private:
int d[N+5][N+5],e1[N+5][N+5],e2[N+5][N+5];
public:
I void Solve()
{
RI i,j,xx,yx,xy,yy,td,te1,te2;for(i=1;i<=n;++i) for(j=1;j<=m;++j)//预处理前缀和
d[i][j]=d[i-1][j]+d[i][j-1]-d[i-1][j-1]+a[i][j],//点数
e1[i][j]=e1[i-1][j]+e1[i][j-1]-e1[i-1][j-1]+(a[i][j]&a[i-1][j]),//向上的边
e2[i][j]=e2[i-1][j]+e2[i][j-1]-e2[i-1][j-1]+(a[i][j]&a[i][j-1]);//向左的边
W(Qt--) F.read(xx),F.read(yx),F.read(xy),F.read(yy),//处理询问
td=d[xy][yy]-d[xx-1][yy]-d[xy][yx-1]+d[xx-1][yx-1],//点数
te1=e1[xy][yy]-e1[xx][yy]-e1[xy][yx-1]+e1[xx][yx-1],//向上的边,最上面一行不能选
te2=e2[xy][yy]-e2[xx-1][yy]-e2[xy][yx]+e2[xx-1][yx],//向左的边,最左边一列不能选
F.writeln(td-te1-te2);//点数-边数=连通块个数
}
}S;
int main()
{
freopen("wang.in","r",stdin),freopen("wang.out","w",stdout);
RI i,j;F.read(n),F.read(m),F.read(Qt);
for(i=1;i<=n;++i) for(j=1;j<=m;++j) F.readD(a[i][j]);
return S.Solve(),F.clear(),0;
}

【2019.8.12 慈溪模拟赛 T2】汪哥图(wang)(前缀和)的更多相关文章

  1. 【2019.8.15 慈溪模拟赛 T2】组合数(binom)(卢卡斯定理+高维前缀和)

    卢卡斯定理 题目中说到\(p\)是质数. 而此时要求组合数向质数取模的结果,就可以用卢卡斯定理: \[C_x^y=C_{x\ div\ p}^{y\ div\ p}\cdot C_{x\ mod\ p ...

  2. 【2019.8.6 慈溪模拟赛 T2】树上路径(tree)(Trie)

    从暴力考虑转化题意 考虑最暴力的做法,我们枚举路径的两端,然后采用类似求树上路径长度的做法,计算两点到根的贡献,然后除去\(LCA\)到根的贡献两次. 即,设\(v_i\)为\(i\)到根路径上的边权 ...

  3. 【2019.8.7 慈溪模拟赛 T2】环上随机点(ran)(自然算法)

    简单声明 我是蒟蒻不会推式子... 所以我用的是乱搞做法... 大自然的选择 这里我用的乱搞做法被闪指导赐名为"自然算法",对于这种输入信息很少的概率题一般都很适用. 比如此题,对 ...

  4. 【2019.8.8 慈溪模拟赛 T2】query(query)(分治+分类讨论)

    分治 首先,我们考虑分治处理此问题. 每次处理区间\([l,r]\)时,我们先处理完\([l,mid]\)和\([mid+1,r]\)两个区间的答案,然后我们再考虑计算左区间与右区间之间的答案. 处理 ...

  5. 【2019.8.9 慈溪模拟赛 T2】摘Galo(b)(树上背包)

    树上背包 这应该是一道树上背包裸题吧. 众所周知,树上背包的朴素\(DP\)是\(O(nm^2)\)的. 但对于这种体积全为\(1\)的树上背包,我们可以通过记\(Size\)优化转移时的循环上界,做 ...

  6. 【2019.8.12 慈溪模拟赛 T1】钥匙(key)(暴力DP)

    暴力\(DP\) 这题做法很多,有\(O(n^2)\)的,有\(O(n^2logn)\)的,还有徐教练的\(O(nlogn)\)的,甚至还有\(bzt\)的二分+线段树优化建图的费用流. 我懒了点,反 ...

  7. 【2019.8.14 慈溪模拟赛 T2】黑心老板(gamble)(2-SAT)

    \(2-SAT\) 考虑每个点只能选择\(R\)或\(B\),可以看作选\(0\)或\(1\). 然后对于给出的关系式,若其中一个位置满足关系式,另两个位置就必须不满足关系式,这样就可以对于每个关系式 ...

  8. 【2019.8.11下午 慈溪模拟赛 T2】数数(gcd)(分块+枚举因数)

    莫比乌斯反演 考虑先推式子: \[\sum_{i=l}^r[gcd(a_i,G)=1]\] \[\sum_{i=l}^r\sum_{p|a_i,p|G}\mu(p)\] \[\sum_{p|G}\mu ...

  9. 【2019.8.11上午 慈溪模拟赛 T2】十七公斤重的文明(seventeen)(奇偶性讨论+动态规划)

    题意转化 考虑我们对于集合中每一个\(i\),若\(i-2,i+k\)存在,就向其连边. 那么,一个合法的集合就需要满足,不会存在环. 这样问题转化到了图上,就变得具体了许多,也就更容易考虑.求解了. ...

随机推荐

  1. js中var、let、const的区别 (待总结)

    https://blog.csdn.net/qq_36784628/article/details/80966826 https://www.cnblogs.com/fly_dragon/p/8669 ...

  2. C# List<T> 转 DataTable

    C# List<T>转DataTable 学习自:博客园 Overview 数据!!个人认为程序就是将数据变着花样的显示它.那么这个时候我们的数据处理和获取就时我们的关键一步,如果你数据都 ...

  3. nginx--代理和负载均衡

    nginx代理 nginx的代理分为正向代理和反向代理 正向代理指的是,一个位于客户端和原始服务器之间的服务器,为了从原始服务器取得内容,客户端向代理发送一个请求并指定目标(原始服务器),然后代理向原 ...

  4. CF582E Boolean Function(DP,状态压缩,FMT)

    简单题. 我第二道自己做出来的 2900 没毛病,我没切过 2800 的题 lqy:"CF 评分 2800 是中等难度" 我活个啥劲啊 为了方便(同时压缩状态个数),先建出表达式树 ...

  5. Python连载52-SOCKET编程示例

    一.UDP编程 1.客户端Client:发起访问的一方. 2.服务器端 3.server段编程 (1)建立socket,socket是负责具体通信的一个实例 (2)绑定,为创建的socket指派固定的 ...

  6. angularjs 一篇文章看懂自定义指令directive

     壹 ❀ 引 在angularjs开发中,指令的使用是无处无在的,我们习惯使用指令来拓展HTML:那么如何理解指令呢,你可以把它理解成在DOM元素上运行的函数,它可以帮助我们拓展DOM元素的功能.比如 ...

  7. MySQL基础之Natural Join用法

    Natural join即自然连接,natural join等同于inner join或inner using,其作用是将两个表中具有相同名称的列进行匹配 用https://www.w3resourc ...

  8. 解决上一篇bean.xml中<bean>标签报错“ Error while downloading 'http://www.springframework.org/schema/beans/spring-beans.xsd........”

    在xml文件中,头部报错如题 一开始查询,说是头部少了“<?xml version="1.0" encoding="UTF-8"?>”,但是我并没有 ...

  9. python 实例方法、静态方法、类方法

    class Date: #构造函数 def __init__(self, year, month, day): self.year = year self.month = month self.day ...

  10. 推荐 | 中文文本标注工具Chinese-Annotator(转载)

    自然语言处理的大部分任务是监督学习问题.序列标注问题如中文分词.命名实体识别,分类问题如关系识别.情感分析.意图分析等,均需要标注数据进行模型训练.深度学习大行其道的今天,基于深度学习的 NLP 模型 ...