在Python中使用Numpy创建向量:

 x = np.array([1, 2, 3, 4])

创建3 x 3矩阵

 B = np.array([[1, 2],[3, 4],[5, 6]])

Shape形状,也可称为维度,表示矩阵中每个维度的具体数值;

 B.shape 3 x 2

转置

行向量可转置为列向量,列向量转置为行向量

如为方阵转置后行数列数不变,对于非方阵,2 x 3矩阵转置后为3 x 2矩阵

 B_t = A.T

检查转置后形状shape

 B_t.shape

矩阵加法

矩阵相加为两个矩阵对应的元素相加;

 A = np.array([1,2],[3,4])
B = np.array([4,5],[5,6])
C = A + B = [[5, 7],[8, 10]]

如标量与矩阵相加规则为:标量与矩阵中对应的每个元素相加;

广播

  广播为Numpy的机制,使得Numpy可以处理各个不同形状(shape)之间的操作,较小的阵列将会被扩充以匹配较大的阵列形状;

  就如上面使用标量与矩阵做相加元素,实际上Numpy把标量转成了与矩阵相同维度的矩阵与该矩阵进行相加;

  比如一个3 x 2 矩阵与一个3 x 1矩阵相加,Numpy会自动把3 x 1矩阵复制一列形成3 x2矩阵与该3 x 2矩阵相加,使得两个矩阵的shape能够匹配;

矩阵乘法

  矩阵乘法与矩阵加法规则并不一样,不是两个矩阵对应的元素相乘,而是计算矩阵行与列对应元素乘积之和;也称为点积;

  矩阵乘法是否有定义,前一个矩阵的列数必须等于后一个矩阵的行数;如n x p与p x m两个矩阵相乘结果为n x m矩阵;

  两个矩阵相乘可以看作是第一个矩阵的每一行与第二个矩阵的每一列之间的点积;

可以使用Numpy的dot()函数计算两个矩阵的乘积;

 A = [[2, 3],[3, 4]]
B = [[1, 1],[3, 4]]
C = np.dot(A, B)
也可以使用 C =A.dot(B)

线性方程组

线性方程组为线性代数用来解决的重要问题之一,

 x1 – 2*x2+x3 = 0
2*x2 - 8*x3 = 8
-4*x1 + 5*x2 + 9*x3 = -9

矩阵B每行为上述方程的常数,A矩阵每行为方程组中的每个方程系数;

 A = np.array([[1 ,-2 ,1],[0 ,2 ,-8],[-4 ,5 9]])
B = np.array([0 ,8 ,-9]) Y= np.linalg.solve(A,B)= [29. 16. 3.]

单位矩阵

任何向量与单位矩阵相乘结果为他本身,单位矩阵:所有沿主对角线元素都是1,而其他所有位置元素都为0;

 np.identity(5)

逆矩阵

A为方阵,存在矩阵B使得AB=BA=I,I为单位矩阵,则称B为的逆矩阵;

对于Ax=b有

 A = np.array([[2, 3], [4,5]])

 A逆矩阵A_inv= np.linalg.inv( A )
I = A_inv.dot( A )

行列式

 A = np.array([1 ,2 ],[4 ,5 ])
D = np.linalg.det(A)

范数

0范数 向量中非零元素个数

 x = np.array([1, 0, -5])
n = np.linalg.norm(x, ord = 0)

1范数 向量中所有元素绝对值之和

 x = np.array([3, 0, -4])
n1 = np.linalg.norm(x, ord = 1)

2范数 向量各个元素平方和求平凡根

 x = np.array([3, 0, -4])
n2 = np.linalg.norm(x, ord = 2)

矩阵的范数

1范数 又称列范数,矩阵列向量中绝对值之和的最大值;

 x = np.array([[-1, 1, 0],[-4, 3, 0],[1, 0, 1]])
n1 = np.linalg.norm(x, ord = 1)

2范数 又称谱范数,A_t A 矩阵的最大特征值的开平方

 a = np.array([[-2, 1, 1],[-4, 3, 0],[1, 0, 2]])
ata = np.matmul(a.T, a)
print ("lambda ", np.linalg.eigvals(ata))
n2 = np.linalg.norm(a, ord = 2)
print('norm_2 ', n2, np.sqrt(30.55403188))

F范数,Frobenius范数,计算方式为矩阵元素的绝对值的平方和再开方。

 x = np.array([[-1, 2, 0],[-4, 3, 0],[1, 0, 2]])
nfro = np.linalg.norm(x, ord = 'fro')

∞范数,又称行和范数, 即矩阵行向量中绝对值之和的最大值。

 x = np.array([[-1, 2, 0],[-4, 3, 0],[1, 0, 2]])
ninf = np.linalg.norm(x, ord = np.inf)

Python与线性代数基本概念的更多相关文章

  1. Python学习:基本概念

    Python学习:基本概念 一,python的特点: 1,python应用场景多;爬虫,网站,数据挖掘,可视化演示. 2,python运行速度慢,但如果CPU够强,这差距并不明显. 3,严格的缩进式编 ...

  2. python面向对象编程 -- 基本概念

    面向对象的编程简要概括就是将要处理的问题抽象为数据和操作的集合,用类对其进行封装.其中数据和操作都称为类的属性,它们是一般是不变的. 对类进行实例化生成我们所说的对象,对象有自己的属性.对象的属性一般 ...

  3. python 中面向对象的概念

    原文 域和作用空间 本地域,函数域(nonlocal)和 全局域(global) def scope_test(): def do_local(): spam = "local spam&q ...

  4. Python错误和异常概念(总)

    转载请标明出处: http://www.cnblogs.com/why168888/p/6435956.html 本文出自:[Edwin博客园] Python错误和异常概念(总) 1. 错误和异常的处 ...

  5. 『Python题库 - 简答题』 Python中的基本概念 (121道)

    ## 『Python题库 - 简答题』 Python中的基本概念 1. Python和Java.PHP.C.C#.C++等其他语言的对比? 2. 简述解释型和编译型编程语言? 3. 代码中要修改不可变 ...

  6. 利用Python学习线性代数 -- 1.1 线性方程组

    利用Python学习线性代数 -- 1.1 线性方程组 本节实现的主要功能函数,在源码文件linear_system中,后续章节将作为基本功能调用. 线性方程 线性方程组由一个或多个线性方程组成,如 ...

  7. python里类的概念

    Python编程中类的概念可以比作是某种类型集合的描述,如"人类"可以被看作一个类,然后用人类这个类定义出每个具体的人--你.我.他等作为其对象.类还拥有属性和功能,属性即类本身的 ...

  8. 用 python 解决线性代数中的矩阵运算

    用 python 解决线性代数中的矩阵运算 矩阵叉乘 矩阵求逆 矩阵转置 假定AX=B,求解未知矩阵X 矩阵的行列式值|matrix| 未完待续..... import sys from PyQt5. ...

  9. python基础整理----基本概念和知识

    整理一下python的基本概念和知识, 主要用python3为语法标准. python介绍 一种面向对象的解释性计算机设计语言,具有丰富和强大的库. python定位:"优雅".& ...

随机推荐

  1. 分享一个撩妹、装13神技能,0基础用Python暴力破解WiFi密码

    WiFi密码Python暴力破解   Python密码破解部分截图 获取视频资料,转发此文+点击喜欢,然后获取资料请加Python交流群:580478401,就可以获取视频教程+源码 环境准备: py ...

  2. oracle插入,更新,删除数据

    插入,更新,删除数据 oracle提供了功能丰富的数据库管理语句 包括有效的向数据库中插入数据的insert语句 更新数据的update语句 以及当数据不再使用时删除数据的delete语句 更改数据之 ...

  3. vue 优化小技巧 之 require.context()

    1.require.context() 回忆一下 当我们引入组件时 第一步 创建一个子组件 第二步 import ... form ... 第三步 components:{..} 第四步 页面使用 & ...

  4. 2019-11-20:xss学习笔记

    xxe漏洞防御使用开发语言提供的禁用外部实体的方法phplibxml_disable_entity_loader(true); 卢兰奇对象模型,bom由于现代浏览器实现了js交互性方面的相同方法和属性 ...

  5. 【2018寒假集训 Day2】【动态规划】钱币兑换(exchange)(自己翻译的2333)

    钱币兑换(exchange) 问题描述: Dave偶然获得了未来几天的美元(dollars)与马克(marks)之间的兑换率.例如Dave开始有100marks,请编写个程序帮助Dave找出最好的买卖 ...

  6. JS进阶面试题整理(仅仅整理我做错的题)

    前几天看到掘金博客一篇文章,找到了这个JavaScript进阶问题列表:现在把地址贴出来,想找工作或者想要巩固自己JS的同学可以参考 该文档会不定时更新    一.箭头函数 箭头函数相当于匿名函数,并 ...

  7. java JDK安装包的获取与安装

    Java JDK 安装包获取和安装: JDK 1.8.211 官网下载地址 https://www.oracle.com/technetwork/java/javase/downloads/jdk8- ...

  8. Python基础之升级pip版本

    使用python -m pip install --upgrade pip命令即可. 查看是否更新成功: 使用pip3 list命令即可.

  9. 第七章终结篇——8251A的总结

    总算把这个第七章复习完了,我把剩下一点关于8251A的发上来吧 本来在讲解8251A书本上还有关于RS232和串口通信的讲解,但是太浅了,就不放了,有兴趣的朋友可以自行参考其他文章 串行通信芯片825 ...

  10. 时至今日,我们应该承认.Net目前的状况实在堪忧

    一:  .Net之前 .Net 经历了多年的锤炼,语言特性本身非常优雅和完善,也是非常甜品的一种语言 二:  .Net现状 但是与此同时,.Net的生态日益糟糕,困扰着广大.Neter 三:   .N ...