数据预处理是机器学习中最基础也最麻烦的一部分内容

在我们把精力扑倒各种算法的推导之前,最应该做的就是把数据预处理先搞定

在之后的每个算法实现和案例练手过程中,这一步都必不可少

同学们也不要嫌麻烦,动起手来吧

基础比较好的同学也可以温故知新,再练习一下哈

闲言少叙,下面我们六步完成数据预处理

其实我感觉这里少了一步:观察数据

![此处输入图片的描述][1]

这是十组国籍、年龄、收入、是否已购买的数据

有分类数据,有数值型数据,还有一些缺失值

看起来是一个分类预测问题

根据国籍、年龄、收入来预测是够会购买

OK,有了大体的认识,开始表演。

Step 1:导入库

import numpy as np

import pandas as pd

Step 2:导入数据集

dataset = pd.read_csv('Data.csv')

X = dataset.iloc[ : , :-1].values
Y = dataset.iloc[ : , 3].values
print("X")
print(X)
print("Y")
print(Y)

这一步的目的是将自变量和因变量拆成一个矩阵和一个向量。

结果如下

X
[['France' 44.0 72000.0]
['Spain' 27.0 48000.0]
['Germany' 30.0 54000.0]
['Spain' 38.0 61000.0]
['Germany' 40.0 nan]
['France' 35.0 58000.0]
['Spain' nan 52000.0]
['France' 48.0 79000.0]
['Germany' 50.0 83000.0]
['France' 37.0 67000.0]]
Y
['No' 'Yes' 'No' 'No' 'Yes' 'Yes' 'No' 'Yes' 'No' 'Yes']

Step 3:处理缺失数据

from sklearn.preprocessing import Imputer
imputer = Imputer(missing_values = "NaN", strategy = "mean", axis = 0)
imputer = imputer.fit(X[ : , 1:3])
X[ : , 1:3] = imputer.transform(X[ : , 1:3])

Imputer类具体用法移步

http://scikit-learn.org/stable/modules/preprocessing.html#preprocessing

本例中我们用的是均值替代法填充缺失值

运行结果如下

Step 3: Handling the missing data
step2
X
[['France' 44.0 72000.0]
['Spain' 27.0 48000.0]
['Germany' 30.0 54000.0]
['Spain' 38.0 61000.0]
['Germany' 40.0 63777.77777777778]
['France' 35.0 58000.0]
['Spain' 38.77777777777778 52000.0]
['France' 48.0 79000.0]
['Germany' 50.0 83000.0]
['France' 37.0 67000.0]]

Step 4:把分类数据转换为数字

from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X = LabelEncoder()
X[ : , 0] = labelencoder_X.fit_transform(X[ : , 0]) onehotencoder = OneHotEncoder(categorical_features = [0])
X = onehotencoder.fit_transform(X).toarray()
labelencoder_Y = LabelEncoder()
Y = labelencoder_Y.fit_transform(Y)
print("X")
print(X) print("Y")
print(Y)

LabelEncoder用法请移步

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html

X
[[1.00000000e+00 0.00000000e+00 0.00000000e+00 4.40000000e+01
7.20000000e+04]
[0.00000000e+00 0.00000000e+00 1.00000000e+00 2.70000000e+01
4.80000000e+04]
[0.00000000e+00 1.00000000e+00 0.00000000e+00 3.00000000e+01
5.40000000e+04]
[0.00000000e+00 0.00000000e+00 1.00000000e+00 3.80000000e+01
6.10000000e+04]
[0.00000000e+00 1.00000000e+00 0.00000000e+00 4.00000000e+01
6.37777778e+04]
[1.00000000e+00 0.00000000e+00 0.00000000e+00 3.50000000e+01
5.80000000e+04]
[0.00000000e+00 0.00000000e+00 1.00000000e+00 3.87777778e+01
5.20000000e+04]
[1.00000000e+00 0.00000000e+00 0.00000000e+00 4.80000000e+01
7.90000000e+04]
[0.00000000e+00 1.00000000e+00 0.00000000e+00 5.00000000e+01
8.30000000e+04]
[1.00000000e+00 0.00000000e+00 0.00000000e+00 3.70000000e+01
6.70000000e+04]]
Y
[0 1 0 0 1 1 0 1 0 1]

Step 5:将数据集分为训练集和测试集

from sklearn.cross_validation import train_test_split

X_train, X_test, Y_train, Y_test = train_test_split( X , Y , test_size = 0.2, random_state = 0)

X_train
[[0.00000000e+00 1.00000000e+00 0.00000000e+00 4.00000000e+01
6.37777778e+04]
[1.00000000e+00 0.00000000e+00 0.00000000e+00 3.70000000e+01
6.70000000e+04]
[0.00000000e+00 0.00000000e+00 1.00000000e+00 2.70000000e+01
4.80000000e+04]
[0.00000000e+00 0.00000000e+00 1.00000000e+00 3.87777778e+01
5.20000000e+04]
[1.00000000e+00 0.00000000e+00 0.00000000e+00 4.80000000e+01
7.90000000e+04]
[0.00000000e+00 0.00000000e+00 1.00000000e+00 3.80000000e+01
6.10000000e+04]
[1.00000000e+00 0.00000000e+00 0.00000000e+00 4.40000000e+01
7.20000000e+04]
[1.00000000e+00 0.00000000e+00 0.00000000e+00 3.50000000e+01
5.80000000e+04]]
X_test
[[0.0e+00 1.0e+00 0.0e+00 3.0e+01 5.4e+04]
[0.0e+00 1.0e+00 0.0e+00 5.0e+01 8.3e+04]]
step2
Y_train
[1 1 1 0 1 0 0 1]
Y_test
[0 0]

Step 6:特征缩放

from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)

大多数机器学习算法在计算中使用两个数据点之间的欧氏距离

特征在幅度、单位和范围上很大的变化,这引起了问题

高数值特征在距离计算中的权重大于低数值特征

通过特征标准化或Z分数归一化来完成

导入sklearn.preprocessing 库中的StandardScala

用法:http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

X_train
[[-1. 2.64575131 -0.77459667 0.26306757 0.12381479]
[ 1. -0.37796447 -0.77459667 -0.25350148 0.46175632]
[-1. -0.37796447 1.29099445 -1.97539832 -1.53093341]
[-1. -0.37796447 1.29099445 0.05261351 -1.11141978]
[ 1. -0.37796447 -0.77459667 1.64058505 1.7202972 ]
[-1. -0.37796447 1.29099445 -0.0813118 -0.16751412]
[ 1. -0.37796447 -0.77459667 0.95182631 0.98614835]
[ 1. -0.37796447 -0.77459667 -0.59788085 -0.48214934]]
X_test
[[-1. 2.64575131 -0.77459667 -1.45882927 -0.90166297]
[-1. 2.64575131 -0.77459667 1.98496442 2.13981082]]

100天搞定机器学习|Day1数据预处理的更多相关文章

  1. 100天搞定机器学习|Day35 深度学习之神经网络的结构

    100天搞定机器学习|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习 ...

  2. 100天搞定机器学习|Day11 实现KNN

    机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|D ...

  3. 100天搞定机器学习|Day8 逻辑回归的数学原理

    机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|D ...

  4. 100天搞定机器学习|Day9-12 支持向量机

    机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|D ...

  5. 100天搞定机器学习|Day16 通过内核技巧实现SVM

    前情回顾 机器学习100天|Day1数据预处理100天搞定机器学习|Day2简单线性回归分析100天搞定机器学习|Day3多元线性回归100天搞定机器学习|Day4-6 逻辑回归100天搞定机器学习| ...

  6. 100天搞定机器学习|Day17-18 神奇的逻辑回归

    前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...

  7. 100天搞定机器学习|Day19-20 加州理工学院公开课:机器学习与数据挖掘

    前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...

  8. 100天搞定机器学习|Day21 Beautiful Soup

    前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...

  9. 100天搞定机器学习|Day22 机器为什么能学习?

    前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...

随机推荐

  1. AABB边框、OBB边框、通过比较球包围

    1) AABB 包围盒: AABB 包围盒是与坐标轴对齐的包围盒, 简单性好, 紧密性较差(尤其对斜对角方向放置的瘦长形对象, 採用AABB, 将留下非常大的边角空隙, 导致大量不是必需的包围盒相交測 ...

  2. 学习git命令

    1.git init @创建仓库 2.git add  filename @添加文件到缓存区 3.git commit -m"注释说明"   @提交修改内容 4.git statu ...

  3. springboot 集成单元测试

    官网参考地址 1. 添加依赖 <!-- 测试 --> <dependency> <groupId>org.springframework.boot</grou ...

  4. springboot 集成swagger ui

    springboot 配置swagger ui 1. 添加依赖 <!-- swagger ui --> <dependency> <groupId>io.sprin ...

  5. HTTP协议-请求报文

  6. 【Android】解决微信调起支付接口没反应,调不起来微信的问题

    原文:[Android]解决微信调起支付接口没反应,调不起来微信的问题 //#前言 吐槽一下,微信支付的sdk真难用,文档混乱,坑不少. 正文:可能引起这种情况的问题 1. 最不能出现的 你的APPI ...

  7. 汇编实现获取CPU信息

    这是文章最后一次更新,加入了TLB与Cache信息等资料前言:论坛上面有人不明白CPUID指令的用法,于是就萌生写这篇文章的想法,若有错误话请大侠指出,谢谢了 ^^论坛的式样貌似有问题,若式样问题导致 ...

  8. ELINK离线编程器版本说明

    ELINK离线编程器版本详情,ELinkPROG版本与固件版本须匹配使用! 编程器支持芯片详细列表参见  https://www.cnblogs.com/raswin/p/9303300.html

  9. Linux下获取arm的交叉编译工具链

    转载请注明文章:Linux下获取arm的交叉编译工具链 出处:多客博图 这里介绍,Linux下获取arm的交叉编译工具链,比如arm-linux-gnueabihf-gcc.arm-linux-gne ...

  10. ArcGIS for Desktop入门教程_第六章_用ArcMap制作地图 - ArcGIS知乎-新一代ArcGIS问答社区

    原文:ArcGIS for Desktop入门教程_第六章_用ArcMap制作地图 - ArcGIS知乎-新一代ArcGIS问答社区 1 用ArcMap制作地图 作为ArcGIS for Deskto ...