注:本篇文章暂时不做流程图,如果有需求后续补做。

1. 需要准备的源码文件列表:

base部分:

kernel\base\core.c

kernel\base\bus.c

kernel\base\dd.c

kernel\base\class.c

kernel\base\driver.c

头文件部分:

kernel\include\linux\device.h

kernel\include\linux\usb.h

kernel\include\scsi\scsi_host.h

usb核心部分:

kernel\driver\usb\core\usb.c

kernel\driverusb\core\driver.c

kernel\driverusb\core\hub.c

kernel\driverusb\core\driver.c

kernel\drivers\usb\core\message.c

kernel\drivers\usb\core\generic.c

大容量设备部分:

kernel\driverusb\storage\usb.c

scsi部分:

kernel\driverscsi\scsi_scan.c

kernel\driverscsi\scsi_sysfs.c

kernel\driverscsi\sg.c

2. 当一个U盘插入linux设备前发生的事情:

a. 最开始注册hub部分:

  需要关注注册驱动的有hub, usb, usb-storage。hub中用来做检测usb口是否有OTG的东东接入,usb是所有usb接入设备的老大哥,usb-storage只是usb的一个小老弟。

翻到 kernel\driver\usb\core\usb.c 源码,这里先注册了hub驱动,再注册了usb驱动。

注:代码中“...”表示忽略这部分的代码,只需要关注贴出来的代码即可。

static int __init usb_init(void)
{
...
retval = usb_hub_init();//注册hub驱动
...
}  

先看hub注册过程,打开kernel\driverusb\core\hub.c,

static struct usb_driver hub_driver = {
.name = "hub",
...
}; int usb_hub_init(void)
{
if (usb_register(&hub_driver) < 0) {
printk(KERN_ERR "%s: can't register hub driver\n",
usbcore_name);
return -1;
}
...
}

先关注usb_register,省略的部分后面再关注,打开kernel\include\linux\usb.h,

/* use a define to avoid include chaining to get THIS_MODULE & friends */
#define usb_register(driver) \
usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)

然后进入kernel\driverusb\core\driver.c中的

int usb_register_driver(struct usb_driver *new_driver, struct module *owner,
const char *mod_name)
{
...
new_driver->drvwrap.driver.name = (char *) new_driver->name;
new_driver->drvwrap.driver.bus = &usb_bus_type;
new_driver->drvwrap.driver.probe = usb_probe_interface;
...
retval = driver_register(&new_driver->drvwrap.driver);
if (retval)
goto out;
...
}
EXPORT_SYMBOL_GPL(usb_register_driver); 
driver_register的实现在kernel\base\driver.c中,
int driver_register(struct device_driver *drv)
{
...
ret = bus_add_driver(drv);
...
}
bus_add_driver的实现在kernel\base\bus.c中,
int bus_add_driver(struct device_driver *drv)
{
...
error = kobject_init_and_add(&priv->kobj, &driver_ktype, NULL,
"%s", drv->name);
... klist_add_tail(&priv->knode_bus, &bus->p->klist_drivers);
...
     module_add_driver(drv->owner, drv);
...
}
这段处理大概就是把hub驱动加入到了一个链表中,因为链表就是拿来做数据操作,基本就是增加,删除,修改,遍历查找的,后续用到的时候再讲即可,hub注册部分就是这样了。

  

b. 注册usb部分:

打开kernel\driver\usb\core\usb.c,就在注册hub驱动的下3行,注册了usb设备驱动,

static int __init usb_init(void)
{
...
retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
...
}

然后进入kernel\driverusb\core\driver.c中的,

int usb_register_device_driver(struct usb_device_driver *new_udriver,
struct module *owner)
{
...
new_udriver->drvwrap.driver.name = (char *) new_udriver->name;
new_udriver->drvwrap.driver.bus = &usb_bus_type;
new_udriver->drvwrap.driver.probe = usb_probe_device;
...
retval = driver_register(&new_udriver->drvwrap.driver); ...
}
EXPORT_SYMBOL_GPL(usb_register_device_driver);

 又到了driver_register,最后也就是把usb设备驱动添加到一个链表中,等待着遍历执行的时刻。

c. 注册usb-storage部分:

打开usb\storage\usb.c,这里注册了usb-storage的驱动,这个驱动就是与U盘节点有关的。

static struct usb_driver usb_storage_driver = {
.name = "usb-storage",
...
}; module_usb_driver(usb_storage_driver);

可以看看它的实现,打开kernel\include\linux\usb.h,

#define module_usb_driver(__usb_driver) \
module_driver(__usb_driver, usb_register, \
usb_deregister)

可以在kernel\include\linux\device.h查看module_driver的实现,

#define module_driver(__driver, __register, __unregister, ...) \
static int __init __driver##_init(void) \
{ \
return __register(&(__driver) , ##__VA_ARGS__); \
} \
module_init(__driver##_init); \
static void __exit __driver##_exit(void) \
{ \
__unregister(&(__driver) , ##__VA_ARGS__); \
} \
module_exit(__driver##_exit);  

就是一个宏,注册用usb_register,反向注册用usb_deregister,然后再module_init它,就会在开机的时候执行了。至于usb_register,最后也就是把usb-storage驱动添加到一个链表中,等待着遍历执行的时刻。

3. 当一个U盘插入linux设备后:

a. 需要有一个线程等待检测U盘插入,重新回到kernel\driverusb\core\hub.c,

int usb_hub_init(void)
{
...
khubd_task = kthread_run(hub_thread, NULL, "khubd");
...
}

  

static int hub_thread(void *__unused)
{
...
do {
hub_events();
wait_event_freezable(khubd_wait,
!list_empty(&hub_event_list) ||
kthread_should_stop());
} while (!kthread_should_stop() || !list_empty(&hub_event_list));
...
}

  

static void hub_events(void)
{
...
while (1) {
...            
             hdev = hub->hdev; //这里有一段获取usb驱动设备过程,忽略,因为我还没仔细研究过
...
if (connect_change)
hub_port_connect_change(hub, i,
portstatus, portchange);
}
...
}
static void hub_port_connect_change(struct usb_hub *hub, int port1,
u16 portstatus, u16 portchange)
{
...
/* Run it through the hoops (find a driver, etc) */
if (!status) {
status = usb_new_device(udev);
...
}

  

int usb_new_device(struct usb_device *udev)
{
...
err = device_add(&udev->dev);
...
}

 

进入到kernel\base\core.c中,

int device_add(struct device *dev)
{
...
bus_probe_device(dev);
...
}

  

进入到kernel\base\bus.c中,

void bus_probe_device(struct device *dev)
{
...
ret = device_attach(dev);
...
}

  

进入到kernel\base\dd.c中,

int device_attach(struct device *dev)
{
...
ret = bus_for_each_drv(dev->bus, NULL, dev, __device_attach);
...
}

  

int bus_for_each_drv(struct bus_type *bus, struct device_driver *start,
void *data, int (*fn)(struct device_driver *, void *))
{
...
error = fn(drv, data);
...
}

  

static int __device_attach(struct device_driver *drv, void *data)
{
...
return driver_probe_device(drv, dev);
}

  

int driver_probe_device(struct device_driver *drv, struct device *dev)
{
...
ret = really_probe(dev, drv);
....
}

  

static int really_probe(struct device *dev, struct device_driver *drv)
{
...
} else if (drv->probe) {
ret = drv->probe(dev);
if (ret)
goto probe_failed;
}
...
}

  之前链表插入的usb设备驱动的probe就在此刻被遍历出来,然后调用。

回顾插入的函数指针,打开kernel\driverusb\core\driver.c,

int usb_register_device_driver(struct usb_device_driver *new_udriver,
struct module *owner)
{
...
new_udriver->drvwrap.driver.probe = usb_probe_device;
...
}

进入 

static int usb_probe_device(struct device *dev)
{
struct usb_device_driver *udriver = to_usb_device_driver(dev->driver);
...
error = udriver->probe(udev);
...
}

由kernel\include\linux\usb.h中:

#define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
drvwrap.driver)

和kernel\driver\usb\core\usb.c中:

retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);

可知

这里的probe会调用usb_generic_driver的probe,因为container_of的作用就是把指向d的指针返回,返回的指针即为&usb_generic_driver。

打开kernel\drivers\usb\core\generic.c,

struct usb_device_driver usb_generic_driver = {
.name = "usb",
.probe = generic_probe,
...
};

  

static int generic_probe(struct usb_device *udev)
{
...
err = usb_set_configuration(udev, c);
...
}

打开kernel\drivers\usb\core\message.c,

int usb_set_configuration(struct usb_device *dev, int configuration)
{
...
ret = device_add(&intf->dev);
...
}

之前提到过device_add->bus_probe_device->device_attach->__device_attach->driver_probe_device->really_probe->传入的设备对应的驱动probe。

在usb_set_configuration或者之前,肯定有一个获取usb-storage驱动信息的过程,总之这次的probe会进入usb_probe_interface,驱动就是之前注册的usb-storage。

打开kernel\driverusb\core\driver.c,

static int usb_probe_interface(struct device *dev)
{
   struct usb_driver *driver = to_usb_driver(dev->driver);
...
error = driver->probe(intf, id);
...
}

同之前container_of返回指向p的指针分析的一样,这次返回的指针是&usb_storage_driver。

打开kernel\driverusb\storage\usb.c,

static int storage_probe(struct usb_interface *intf,
const struct usb_device_id *id)
{
...
     result = usb_stor_probe1(&us, intf, id, unusual_dev);
...
result = usb_stor_probe2(us);
...
} static struct usb_driver usb_storage_driver = {
.name = "usb-storage",
     .probe = storage_probe,
...
};

  

int usb_stor_probe1(struct us_data **pus,
struct usb_interface *intf,
const struct usb_device_id *id,
struct us_unusual_dev *unusual_dev)
{
...
INIT_DELAYED_WORK(&us->scan_dwork, usb_stor_scan_dwork);
...
}
int usb_stor_probe2(struct us_data *us)
{
...
queue_delayed_work(system_freezable_wq, &us->scan_dwork,
delay_use * HZ);
...
}

 这段就是usb_stor_probe1中注册了一个延时的工作队列,然后usb_stor_probe2唤醒这个工作队列注册的函数usb_stor_scan_dwork工作。

  

static void usb_stor_scan_dwork(struct work_struct *work)
{
...
scsi_scan_host(us_to_host(us));
...
}

  

下一步就是scsi子系统的工作了。

b. sg节点的创建。

打开kernel\driverscsi\scsi_scan.c,

void scsi_scan_host(struct Scsi_Host *shost)
{
...
async_schedule(do_scan_async, data);
...
}

  

static void do_scan_async(void *_data, async_cookie_t c)
{
...
scsi_finish_async_scan(data);
}

  

static void scsi_finish_async_scan(struct async_scan_data *data)
{
...
scsi_sysfs_add_devices(shost);
...
}

  

static void scsi_sysfs_add_devices(struct Scsi_Host *shost)
{
...
if (!scsi_host_scan_allowed(shost) ||
scsi_sysfs_add_sdev(sdev) != 0)
__scsi_remove_device(sdev);
}
}

 

打开kernel\driverscsi\scsi_sysfs.c,

int scsi_sysfs_add_sdev(struct scsi_device *sdev)
{
...
error = device_add(&sdev->sdev_dev);
...

注:这里传的是&sdev->sdev_dev,而不是&sdev->sdev_gendev

又到了device_add,这次可不是走really_probe那么简单了,直接show出关键代码,

打开kernel\base\core.c,

int device_add(struct device *dev)
{
...
if (class_intf->add_dev)
class_intf->add_dev(dev, class_intf);
...
}  

add_dev会调用哪个class_interface?

打开kernel\driverscsi\sg.c

static int __init
init_sg(void)
{
...
rc = scsi_register_interface(&sg_interface);
...
}

  

static struct class_interface sg_interface = {
.add_dev = sg_add,
.remove_dev = sg_remove,
};

可知调用的add_dev就是sg_add,所以节点sg就是以下代码创建的。

static int
sg_add(struct device *cl_dev, struct class_interface *cl_intf)
{
...
sdp = sg_alloc(disk, scsidp);
...
}

  

static Sg_device *sg_alloc(struct gendisk *disk, struct scsi_device *scsidp)
{
...
sprintf(disk->disk_name, "sg%d", k);
...
}

  

源码太多,花了我大把时间才捋清。

大体就是,注册一堆东东,总线(usb)啊,驱动设备(usb)啊,驱动(hub,usb-storage)啊,class(sg_interface)啊等等,然后跑一个线程,检测到需要的东东后,比对注册到特定链表的数据,然后就调用各种probe和注册的接口如add_dev等。

linux中OTG识别到一个U盘后产生一个sg节点的全过程的更多相关文章

  1. 【Linux】windows下编写的脚本文件,放到Linux中无法识别格式

    注意:我启动的时候遇到脚本错误 » sh startup.sh -m standalone tanghuang@bogon : command not found : command not foun ...

  2. linux中应用程序main函数中没有开辟进程的,它应该在那个进程中运行呢?

    1.main函数是一个进程还是一个线程? 不知道你是用c创建的,还是用java创建的. 因为它们都是以main()做为入口开始运行的. 是一个线程,同时还是一个进程. 在现在的操作系统中,都是多线程的 ...

  3. Linux中main是如何执行的

    Linux中main是如何执行的 这是一个看似简单的问题,但是要从Linux底层一点点研究问题比较多.找到了一遍研究这个问题的文章,但可能比较老了,还是在x86机器上进行的测试. 原文链接 开始 问题 ...

  4. Linux中等待队列的实现

    1.       等待队列数据结构 等待队列由双向链表实现,其元素包括指向进程描述符的指针.每个等待队列都有一个等待队列头(wait queue head),等待队列头是一个类型为wait_quequ ...

  5. linux中的vi编辑器(一)

    1.在linux中如果两个用户都在打开一个文件进行编辑,那么文件最后将以最后保存的版本为主. 2.vi仅仅是一个文本编辑器,相当于windows中的记事本,vi的工作模式, 命令模式:在该模式下,在键 ...

  6. linux中rpm安装

    目录 一:linux中rpm安装 1.rpm简介 2.区别 3.RPM命令五种基本模式 二:RPM安装全面解析 1,下载软件包 2, 安装软件包 3, 尝试卸载 4, 更新(升级) 5,软件包名称: ...

  7. linux中判断一个命令是否执行成功

    每一条基本命令执行后都有一个返回码,该返回码是用$?表示,执行成功的返回码是0,例如:if [ $? -ne 0 ];then 上一命令执行失败时的操作else 上一命令执行成功时的操作fi例如lin ...

  8. 在Linux中搭建一个FTP服务器

    在Linux中搭建一个ftp服务器,以供两个工作小组保管文件使用.禁用匿名.第一个小组使用ftp账号:ftp1,工作目录在:/var/ftp/ftp1:第二个小组使用ftp2,工作目录在:/var/f ...

  9. 在Linux中,如何取出一个字符串的前5位

    问: 在Linux中,如何取出一个字符串的前5位? 常用的一些方法如下: [tough@toughhou ~]$ str=abcdef [tough@toughhou ~]$ echo $str ab ...

随机推荐

  1. JS---变速动画函数封装

    变速动画函数封装 匀速动画:每次步数都是10 (var step=10;) 变速(缓动)动画:每次的步数是用当前位置和目标位置相减 var step=(target-current)/10; 代码如下 ...

  2. 面试连环炮系列(十):一个线程调用两次start会怎么样

    一个线程调用两次start会怎么样 Java的线程是不允许启动两次的,第二次调用必然会抛出IllegalThreadStateException,这是一种运行时异常. 谈谈线程的生命周期和状态转移 新 ...

  3. JS中遍历对象属性的四种方法

    Object.keys().Object.values().Object.entries().for...in.Map (1)Object.keys(): let ex1 = {c1: 'white' ...

  4. fastjson又被发现漏洞,这次危害可能会导致服务瘫痪

    0x00 漏洞背景 2019年9月5日,fastjson在commit 995845170527221ca0293cf290e33a7d6cb52bf7上提交了旨在修复当字符串中包含\\x转义字符时可 ...

  5. C#/.Net开发入门篇(3)——console类的输入输出

    相信看了我上一篇文章的小伙伴们都知道console这个类的最基本的2个方法了吧,下去练习过的小伙伴应该能知道4个方法. 那么下面我们就来介绍一下上期没有介绍完的另外2个方法Console.WriteL ...

  6. netcore 2.2 使用 AutoMapper 实现实体之间映射

    一.什么是AutoMapper? AutoMapper是一个简单的对象映射框架(OOM),将一个对象映射到另一个对象. 二.AutoMapper的好处 以前的时候我们将DTO对象转换为Model对象时 ...

  7. doPost()和doGet()方法的区别?

    GET和POST请求都是http的请求方式,用户通过不同的http的请求方式完成对资源(url)的不同操作.GET,POST,PUT,DELETE就对应着对这个资源的查 ,改 ,增 ,删 4个操作,具 ...

  8. AssemblyBuilder以及Activator双剑合璧

    AssemblyBuilder和Activator两个类是DispatchProxy类实现动态代理以及AOP的根本,示例demo可参考 DispatchProxy实现动态代理及AOP .Assembl ...

  9. selectors模块的设计亮点

    事件类型标志的选择 在selectors模块中的开头直接定义了事件类型的标志数字,选用的是(1 << 0)就是1代替EVENT_READ读操作:使用(1 << 1)就是2代替E ...

  10. dex方法隐藏后的反编译和运行时 效果

    隐藏smali方法后 java源码: int b = fun2(); baksmali解释为: invoke-virtual                  {v1}, <int MainAc ...