概述

StreamingListener 是针对spark streaming的各个阶段的事件监听机制。

StreamingListener接口

//需要监听spark streaming中各个阶段的事件只需实现这个特质中对应的事件函数即可
//本身既有注释说明
trait StreamingListener { /** Called when the streaming has been started */
/** streaming 启动的事件 */
def onStreamingStarted(streamingStarted: StreamingListenerStreamingStarted) { } /** Called when a receiver has been started */
/** 接收启动事件 */
def onReceiverStarted(receiverStarted: StreamingListenerReceiverStarted) { } /** Called when a receiver has reported an error */
def onReceiverError(receiverError: StreamingListenerReceiverError) { } /** Called when a receiver has been stopped */
def onReceiverStopped(receiverStopped: StreamingListenerReceiverStopped) { } /** Called when a batch of jobs has been submitted for processing. */
/** 每个批次提交的事件 */
def onBatchSubmitted(batchSubmitted: StreamingListenerBatchSubmitted) { } /** Called when processing of a batch of jobs has started. */
/** 每个批次启动的事件 */
def onBatchStarted(batchStarted: StreamingListenerBatchStarted) { } /** Called when processing of a batch of jobs has completed. */
/** 每个批次完成的事件 */
def onBatchCompleted(batchCompleted: StreamingListenerBatchCompleted) { } /** Called when processing of a job of a batch has started. */
def onOutputOperationStarted(
outputOperationStarted: StreamingListenerOutputOperationStarted) { } /** Called when processing of a job of a batch has completed. */
def onOutputOperationCompleted(
outputOperationCompleted: StreamingListenerOutputOperationCompleted) { }
}

自定义StreamingListener

功能:监控批次处理时间,若超过阈值则告警,每次告警间隔2分钟

class SparkStreamingDelayListener(private val appName:String, private val duration: Int,private val times: Int) extends StreamingListener{

  private val logger = LoggerFactory.getLogger("SparkStreamingDelayListener")

//每个批次完成时执行
override def onBatchCompleted(batchCompleted: StreamingListenerBatchCompleted): Unit = {
val batchInfo = batchCompleted.batchInfo
val processingStartTime = batchCompleted.batchInfo.processingStartTime
val numRecords = batchCompleted.batchInfo.numRecords
val processingEndTime = batchInfo.processingEndTime
val processingDelay = batchInfo.processingDelay
val totalDelay = batchInfo.totalDelay //将每次告警时间写入redis,用以判断告警间隔大于2分钟
val jedis = RedisClusterClient.getJedisClusterClient()
val current_time = (System.currentTimeMillis / 1000).toInt
val redis_time = jedis.get(appName)
var flag = false
if(redis_time==null || current_time-redis_time.toInt>120){
jedis.set(appName,current_time.toString)
flag = true
} //若批次处理延迟大于批次时长指定倍数,并且告警间隔大约2分钟,则告警
if(totalDelay.get >= times * duration * 1000 && flag){
val monitorContent = appName+": numRecords ->"+numRecords+",processingDelay ->"+processingDelay.get/1000+" s,totalDelay -> "+totalDelay.get/1000+"s"
println(monitorContent)
val msg = "Streaming_"+appName+"_DelayTime:"+totalDelay.get/1000+"S"
val getURL = "http://node1:8002/message/weixin?msg="+msg
HttpClient.doGet(getURL)
}
}
}

应用

//streamingListener不需要在配置中设置,可以直接添加到streamingContext中
object My{
def main(args : Array[String]) : Unit = {
val sparkConf = new SparkConf()
val ssc = new StreamingContext(sparkConf,Seconds(20))
ssc.addStreamingListener(new SparkStreamingDelayListener("Userid2Redis", duration,times)) ....
}
}

订阅关注微信公众号《大数据技术进阶》,及时获取更多大数据架构和应用相关技术文章!

Spark Streaming任务延迟监控及告警的更多相关文章

  1. 【转】Spark Streaming 实时计算在甜橙金融监控系统中的应用及优化

    系统架构介绍 整个实时监控系统的架构是先由 Flume 收集服务器产生的日志 Log 和前端埋点数据, 然后实时把这些信息发送到 Kafka 分布式发布订阅消息系统,接着由 Spark Streami ...

  2. Spark Streaming编程指南

    Overview A Quick Example Basic Concepts Linking Initializing StreamingContext Discretized Streams (D ...

  3. 大数据技术之_19_Spark学习_04_Spark Streaming 应用解析 + Spark Streaming 概述、运行、解析 + DStream 的输入、转换、输出 + 优化

    第1章 Spark Streaming 概述1.1 什么是 Spark Streaming1.2 为什么要学习 Spark Streaming1.3 Spark 与 Storm 的对比第2章 运行 S ...

  4. Spark Streaming核心概念与编程

    Spark Streaming核心概念与编程 1. 核心概念 StreamingContext Create StreamingContext import org.apache.spark._ im ...

  5. 4. Spark Streaming解析

    4.1 初始化StreamingContext import org.apache.spark._ import org.apache.spark.streaming._ val conf = new ...

  6. 大数据开发实战:Spark Streaming流计算开发

    1.背景介绍 Storm以及离线数据平台的MapReduce和Hive构成了Hadoop生态对实时和离线数据处理的一套完整处理解决方案.除了此套解决方案之外,还有一种非常流行的而且完整的离线和 实时数 ...

  7. 【Streaming】30分钟概览Spark Streaming 实时计算

    本文主要介绍四个问题: 什么是Spark Streaming实时计算? Spark实时计算原理流程是什么? Spark 2.X下一代实时计算框架Structured Streaming Spark S ...

  8. Spark(五) -- Spark Streaming介绍与基本执行过程

    Spark Streaming作为Spark上的四大子框架之一,肩负着实时流计算的重大责任 而相对于另外一个当下十分流行的实时流计算处理框架Storm,Spark Streaming有何优点?又有何不 ...

  9. Spark Streaming Listener 监控批次处理延迟进行告警

    概述 StreamingListener 是针对spark streaming的各个阶段的事件监听机制. StreamingListener接口 //需要监听spark streaming中各个阶段的 ...

随机推荐

  1. 大型情感剧集Selenium:4_老中医教你(单/多/下拉框)选项定位 #华为云·寻找黑马程序员#

    今天讲什么 讲什么标题说了,讲selenium的单选.多选.下拉框选项定位.但其实这东西,没什么太多说的,又比较枯燥,那该怎么让这一集selenium的课程变得有趣呢?有请老中医,哈哈- 怎么样,这个 ...

  2. 【nodejs原理&源码赏析(5)】net模块与通讯的实现

    [摘要] Node.js net模块的原理及使用 示例代码托管在:http://www.github.com/dashnowords/blogs 一. net模块简介 net模块是nodejs通讯功能 ...

  3. ActiveMQ配置策略

    1.消息发送 1.异步发送 消息生产者使用持久(persistent)传递模式发送消息的时候,Producer.send() 方法会被阻塞,直到 broker 发送一个确认消息给生产者,这个确认消息暗 ...

  4. Mybatis整合spring详细教程(适合小白童鞋)

    目录 1.整合思路 2.整合需要的jar包 3.整合的步骤 4.Dao的开发的两种实现方式 6.Dao的开发的实现方式总结图 @ Mybatis整合spring其实就是SSM框架中SM的整合集成. 1 ...

  5. OSS 对象存储的那些事AmazonS3简单使用

    对象存储是根据AmazonS3来做的封装,主要功能 :文件的上传下载 生成链接 对图片的处理 查看桶内对象等一系列的操作. 本文主要做的是文件的上传下载生成链接以及前期的准备工作 以springboo ...

  6. POJ3111

    Demy has n jewels. Each of her jewels has some value vi and weight wi. Since her husband John got br ...

  7. 洛谷 题解 P1604 【B进制星球】

    题目:P1604 B进制星球 本人提交记录:R6292872 作为一个极其无聊的人,我没事干地写了operator... 思路很简单: 读入b 读入b进制的x,y ans = x + y 输出ans ...

  8. 第一节:Shiro HelloWorld 实现

    1.新建maven工程,pom配置maven jar包 <dependency> <groupId>org.apache.shiro</groupId> <a ...

  9. 每个pool pg数计算

    ceph PGs per Pool Calculator 原文档:http://xiaqunfeng.cc/2017/09/18/ceph-PGs-per-Pool-Calculator/ 2017- ...

  10. cmake 简介

    CMake是一个跨平台的安装(编译)工具,可以用简单的语句来描述所有平台的安装(编译过程).他能够输出各种各样的makefile或者project文件,能测试编译器所支持的C++特性,类似UNIX下的 ...