ParquetDecodingException: Can not read value at 0 in block -1 in file hdfs:...
: jdbc:hive2://master01.hadoop.dtmobile.cn:1> select * from cell_random_grid_tmp2 limit 1; INFO : Compiling command(queryId=hive_20190904113737_49bb8821-f8a1-4e49-a32e-12e3b45c6af5): INFO : Semantic Analysis Completed INFO : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:grid_row_id, type:,), comment:null)], properties:null) INFO : Completed compiling command(queryId=hive_20190904113737_49bb8821-f8a1-4e49-a32e-12e3b45c6af5); Time taken: 0.045 seconds INFO : Executing command(queryId=hive_20190904113737_49bb8821-f8a1-4e49-a32e-12e3b45c6af5): INFO : Completed executing command(queryId=hive_20190904113737_49bb8821-f8a1-4e49-a32e-12e3b45c6af5); Time taken: 0.001 seconds INFO : OK Error: java.io.IOException: parquet.io.ParquetDecodingException: Can not read value at in file hdfs://master01.hadoop.dtmobile.cn:8020/user/hive/warehouse/capacity.db/cell_random_grid_tmp2/part-00000-82a689a5-7c2a-48a0-ab17-8bf04c963ea6-c000.snappy.parquet (state=,code=0) : jdbc:hive2://master01.hadoop.dtmobile.cn:1>
通过spark2.3 sparksql执行写数据到hive,saveAsTable(),sparksql写数据到hive时候,默认是保存为parquet+snappy的数据。在数据保存完成之后,通过hive beeline查询,报错如上。但是通过spark查询,执行正常。
在stackoverflow上找到同样的问题:
根本原因如下:
This issue is caused because of different parquet conventions used in Hive and Spark. In Hive, the decimal datatype is represented as fixed bytes (INT 32). In Spark 1.4 or later the default convention is to use the Standard Parquet representation for decimal data type. As per the Standard Parquet representation based on the precision of the column datatype, the underlying representation changes.
eg: DECIMAL can be used to annotate the following types: int32: for 1 <= precision <= 9 int64: for 1 <= precision <= 18; precision < 10 will produce a warning
Hence this issue happens only with the usage of datatypes which have different representations in the different Parquet conventions. If the datatype is DECIMAL (10,3), both the conventions represent it as INT32, hence we won't face an issue. If you are not aware of the internal representation of the datatypes it is safe to use the same convention used for writing while reading. With Hive, you do not have the flexibility to choose the Parquet convention. But with Spark, you do.
Solution: The convention used by Spark to write Parquet data is configurable. This is determined by the property spark.sql.parquet.writeLegacyFormat The default value is false. If set to "true", Spark will use the same convention as Hive for writing the Parquet data. This will help to solve the issue.
所以尝试调整参数 spark.sql.parquet.writeLegacyFormat = true,问题解决。
到spark2.3源代码中查找该参数(spark.sql.parquet.writeLegacyFormat):
package org.apache.spark.sql.internal 中 关于sparksql的默认配置 SQLConf.scala中相关描述如下
val PARQUET_WRITE_LEGACY_FORMAT = buildConf("spark.sql.parquet.writeLegacyFormat")
.doc("Whether to be compatible with the legacy Parquet format adopted by Spark 1.4 and prior " +
"versions, when converting Parquet schema to Spark SQL schema and vice versa.")
.booleanConf
.createWithDefault(false)
可以看到默认值为false
在 package org.apache.spark.sql.execution.datasources.parquet 的关于ParquetWriteSupport.scala 的描述如下:
/** * A Parquet [[WriteSupport]] implementation that writes Catalyst [[InternalRow]]s as Parquet * messages. This class can write Parquet data in two modes: * * - Standard mode: Parquet data are written in standard format defined in parquet-format spec. * - Legacy mode: Parquet data are written in legacy format compatible with Spark 1.4 and prior. * * This behavior can be controlled by SQL option `spark.sql.parquet.writeLegacyFormat`. The value * of this option is propagated to this class by the `init()` method and its Hadoop configuration * argument. */
ParquetDecodingException: Can not read value at 0 in block -1 in file hdfs:...的更多相关文章
- python3: error while loading shared libraries: libpython3.5m.so.1.0: cannot open shared object file: No such file or directory
安装python3遇到报错: wget https://www.python.org/ftp/python/3.5.2/Python-3.5.2.tgz ./configure --prefix=/u ...
- svnadmin:error while loading shared libraries: libaprutil-1.so.0:cannot open shared object file: No such file or directory
wdcp下安装svn后一直提示 svnadmin:error while loading shared libraries: libaprutil-1.so.0:cannot open shared ...
- 动态链接库找不到 : error while loading shared libraries: libgsl.so.0: cannot open shared object file: No such file or directory
问题: 运行gsl(GNU scientific Library)的函数库,用 gcc erf.c -I/usr/local/include -L/usr/local/lib64 -L/usr/loc ...
- 解决libpython2.6.so.1.0: cannot open shared object file
文章解决的问题:安装nginx中需要Python2.6的支持,下面介绍如何安装Python2.6,并建立lib的连接. 问题展示:error while loading shared librarie ...
- ./filezilla: error while loading shared libraries: libpng12.so.0: cannot open shared object file: No such file or directory
opensuse系统 在filezilla官网下载压缩文件解压运行后报 ./filezilla: error while loading shared libraries: libpng12.so.0 ...
- error while loading shared libraries: libpthread.so.0: cannot open shared object file: No such file
安装rac10g,出现例如以下错误: [root@rac2 oracle]# /u01/product/crs/root.sh WARNING: directory '/u01/product' is ...
- tensorflow-gpu版本出现libcublas.so.8.0:cannot open shared object file
文章主要参考以下博客https://www.aliyun.com/zixun/wenji/1289957.html 在利用GPU加速tensorflow时,出现了libcublas.so.8.0:ca ...
- ubuntu下tensorflow 报错 libcusolver.so.8.0: cannot open shared object file: No such file or directory
解决方法1. 在终端执行: export LD_LIBRARY_PATH=”$LD_LIBRARY_PATH:/usr/local/cuda/lib64” export CUDA_HOME=/usr/ ...
- 〖Android〗arm-linux-androideabi-gdb报 libpython2.6.so.1.0: cannot open shared object file错误的解决方法
执行: prebuilts/gcc/linux-x86/arm/arm-linux-androideabi-4.6/bin/arm-linux-androideabi-gdb out/target/p ...
随机推荐
- ES6--变量
声明变量 首先我们来回顾一下 es6 之前声明变量的方法:通常情况下,在 JavaScript 中,我们只有一种声明变量的关键字--var,我们使用 var 声明变量,使用 = 给变量赋值.在es6中 ...
- Nginx搭建详细
Linux 安装Nginx搭建详细内容 进入:/usr/java/nginx位置下载nginx: wget et http://nginx.org/download/nginx-1.8.0.tar.g ...
- Asp.Net MVC 高级特性(附带源码剖析)
1. 程序入口(MvcHandler,RouteHandler,HttpModule) 2.异步类包(静态类AsyncResultWrapper),开启整个MVC异步循环 3.Aggregate递归链 ...
- 新IT运维时代 | Docker运维之最佳实践-下篇
上篇针对操作系统.主机配置.容器镜像.容器运行时四大方面分享一些Docker的运维经验,本篇将着重在Docker Daemon参数和权限两个方面进一步分享.(阅读上篇请点击右侧:新IT运维时代 | D ...
- F#周报2019年第31期
新闻 现在开始接受FSSF的第七次师友计划申请 Xamarin播客:XAML热重载 TorchSharp:将PyTorch引擎带入.NET 视频及幻灯片 F#中的异步编程2/3--实现异步工作流 ML ...
- eclipse的下载安装配置
1.在eclipse官网下载与你电脑版本相对应的安装包.链接:https://www.eclipse.org/downloads/eclipse-packages/ 2.下载与eclipse版本相对应 ...
- bucket list 函数解析
cls_bucket_list 函数 librados::IoCtx index_ctx; // key - oid (for different shards if there is any) ...
- Kafka学习(四)-------- Kafka核心之Producer
通过https://www.cnblogs.com/tree1123/p/11243668.html 已经对consumer有了一定的了解.producer比consumer要简单一些. 一.旧版本p ...
- gcd, exgcd的证明
- 关于修改主机名和ssh免密登录
修改主机名的常规方法: 1.hostname name2.echo name > /proc/sys/kernel/hostname3.sysctl kernel.hostname=name4 ...