CF1225C p-binary
CF1225C p-binary
题目描述
Vasya will fancy any number as long as it is an integer power of two. Petya, on the other hand, is very conservative and only likes a single integer pp (which may be positive, negative, or zero). To combine their tastes, they invented pp -binary numbers of the form 2^x + p2x+p , where xx is a non-negative integer.
For example, some -9−9 -binary ("minus nine" binary) numbers are: -8−8 (minus eight), 77 and 10151015 ( -8=2^0-9−8=20−9 , 7=2^4-97=24−9 , 1015=2^{10}-91015=210−9 ).
The boys now use pp -binary numbers to represent everything. They now face a problem: given a positive integer nn , what's the smallest number of pp -binary numbers (not necessarily distinct) they need to represent nn as their sum? It may be possible that representation is impossible altogether. Help them solve this problem.
For example, if p=0p=0 we can represent 77 as 2^0 + 2^1 + 2^220+21+22 .
And if p=-9p=−9 we can represent 77 as one number (2^4-9)(24−9) .
Note that negative pp -binary numbers are allowed to be in the sum (see the Notes section for an example).
输入格式
The only line contains two integers nn and pp ( 1 \leq n \leq 10^91≤n≤109 , -1000 \leq p \leq 1000−1000≤p≤1000 ).
输出格式
If it is impossible to represent nn as the sum of any number of pp -binary numbers, print a single integer -1−1 . Otherwise, print the smallest possible number of summands.
输入输出样例
输入 #1复制
输出 #1复制
输入 #2复制
输出 #2复制
输入 #3复制
输出 #3复制
输入 #4复制
输出 #4复制
输入 #5复制
输出 #5复制
说明/提示
00 -binary numbers are just regular binary powers, thus in the first sample case we can represent 24 = (2^4 + 0) + (2^3 + 0)24=(24+0)+(23+0) .
In the second sample case, we can represent 24 = (2^4 + 1) + (2^2 + 1) + (2^0 + 1)24=(24+1)+(22+1)+(20+1) .
In the third sample case, we can represent 24 = (2^4 - 1) + (2^2 - 1) + (2^2 - 1) + (2^2 - 1)24=(24−1)+(22−1)+(22−1)+(22−1) . Note that repeated summands are allowed.
In the fourth sample case, we can represent 4 = (2^4 - 7) + (2^1 - 7)4=(24−7)+(21−7) . Note that the second summand is negative, which is allowed.
In the fifth sample case, no representation is possible.
题解:
对于一个给定的\(n,p\),试求一个最小的\(k\),使得存在:
\]
那么对于题意,我们很容易发现,这个数就是多加了\(i\)个\(p\),如果把这\(i\)个\(p\)去掉,那么就显然可以把这个数\(n-i\times p\)进行二进制拆分,拆成很多个二的整数次幂之和,我们要求出这个最小的加数数量。
根据二进制拆分的原则,我们把这个数\(n-i\times p\)用二进制表示,其中有\(1\)对应的第\(i\)位就是\(2^{i-1}\)(根据位运算的性质)。
那么,我们算出来这个数\(n-i\times p\)的二进制表示中1的个数,如果这个个数比\(i\)大,那么就不合法(这是显然的)。并且,如果\(n-i\times p<i\),那么也不合法。
那么我们从小到大枚举,判断一下即可。
如有对lowbit运算不太了解的同学,可参考本蒟蒻的这篇博客:
代码:
#include<cstdio>
using namespace std;
int n,p,ans,flag;
int lowbit(int x)
{
int ret=0;
while(x)
{
x-=x&-x;
ret++;
}
return ret;
}
int main()
{
scanf("%d%d",&n,&p);
for(int i=1;;i++)
{
if(n-i*p<i)
break;
if(lowbit(n-i*p)>i)
continue;
ans=i;
flag=1;
break;
}
if(flag)
{
printf("%d",ans);
return 0;
}
else
{
printf("-1");
return 0;
}
}
CF1225C p-binary的更多相关文章
- [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法
二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...
- ILJMALL project过程中遇到Fragment嵌套问题:IllegalArgumentException: Binary XML file line #23: Duplicate id
出现场景:当点击"分类"再返回"首页"时,发生error退出 BUG描述:Caused by: java.lang.IllegalArgumentExcep ...
- Leetcode 笔记 110 - Balanced Binary Tree
题目链接:Balanced Binary Tree | LeetCode OJ Given a binary tree, determine if it is height-balanced. For ...
- Leetcode 笔记 99 - Recover Binary Search Tree
题目链接:Recover Binary Search Tree | LeetCode OJ Two elements of a binary search tree (BST) are swapped ...
- Leetcode 笔记 98 - Validate Binary Search Tree
题目链接:Validate Binary Search Tree | LeetCode OJ Given a binary tree, determine if it is a valid binar ...
- Leetcode: Convert sorted list to binary search tree (No. 109)
Sept. 22, 2015 学一道算法题, 经常回顾一下. 第二次重温, 决定增加一些图片, 帮助自己记忆. 在网上找他人的资料, 不如自己动手. 把从底向上树的算法搞通俗一些. 先做一个例子: 9 ...
- Leetcode, construct binary tree from inorder and post order traversal
Sept. 13, 2015 Spent more than a few hours to work on the leetcode problem, and my favorite blogs ab ...
- [LeetCode] Binary Watch 二进制表
A binary watch has 4 LEDs on the top which represent the hours (0-11), and the 6 LEDs on the bottom ...
- [LeetCode] Find Leaves of Binary Tree 找二叉树的叶节点
Given a binary tree, find all leaves and then remove those leaves. Then repeat the previous steps un ...
随机推荐
- C语言中,嵌套的if语句的一些经验...
double f(double x){double result;if(x<0)result=-x+sin(x);else if(x==0)result=0; else if(10> ...
- Codeforces Round #598 (Div. 3) C. Platforms Jumping 贪心或dp
C. Platforms Jumping There is a river of width n. The left bank of the river is cell 0 and the right ...
- java之逻辑运算符
&-逻辑与 |-逻辑或 !-逻辑非 &&-短路与 ||-短路或 ^-逻辑异或 a b a&b a|b !a a^b a&& ...
- Pandas入门系列(一)-- Series
Series的创建 ##数据分析汇总学习 https://blog.csdn.net/weixin_39778570/article/details/81157884 # 使用列表创建 >> ...
- 2019_JAVA面试题_真实总结
来自刚被某互联网公司录取的朋友的分享. 整理的面试题1: 1.Java里面有哪几种基础数据类型, 2.Char为何是两个字节, 3.Object有哪些方法 4.final修饰变量,函数,类的作用, 5 ...
- laravel中的表单请求类型和CSRF防护(六)
laravel中为我们提供了绑定不同http请求类型的函数. Route::get('/test', function () {}); Route::post('/test', function () ...
- Java开发桌面程序学习(12)——Javafx 悬浮窗提示 tooptip
Javafx 悬浮窗提示 tooptip 鼠标悬浮在某个控件,弹出提示,效果如下: 代码: //control是某个控件 Tooltip.install(control, new Tooltip(&q ...
- CAD画三维图怎么渲染?一分钟教你快速操作
从事过CAD相关工作的都知道,CAD绘制的方式有二维平面图以及三维图形,三维图形,画三维图方式也是比较简单的.那当然三维图画完后一般还需要进行渲染操作,步骤也是比较简洁的.下面就来给大家操作一下CAD ...
- C#与SAP系统的接口调用
Sap作为ERP的龙头企业,在企业信息化建设中是有目共睹的,特别是财务.人力.物流等发挥着极大作用,占领着半壁江山,所以与企业系统用SAP软件的接口对接很是普遍,简单介绍一下与SAP接口的一点点儿心得 ...
- Tasteless challenges medium WP
http://chall.tasteless.eu/ 国外的一个靶场,都是单点知识,medium大部分还是比较简单 medium Level 1- Infiltration http://chall. ...