题目描述

给出一个长度为N的非负整数序列A[i],对于所有1 ≤ k ≤ (N + 1) / 2,输出A[1], A[3], …, A[2k - 1]的中位数。即前1,3,5,……个数的中位数。

输入输出格式

输入格式:

输入文件median.in的第1行为一个正整数N,表示了序列长度。

第2行包含N个非负整数A[i] (A[i] ≤ 10^9)。

输出格式:

输出文件median.out包含(N + 1) / 2行,第i行为A[1], A[3], …, A[2i – 1]的中位数。

输入输出样例

输入样例#1: 复制

7
1 3 5 7 9 11 6
输出样例#1: 复制

1
3
5
6

说明

对于20%的数据,N ≤ 100;

对于40%的数据,N ≤ 3000;

对于100%的数据,N ≤ 100000。

/*
将a数组去重后存在b数组里,用b数组的大小建树。
用树的l作为数字,num记录这个数出现的次数,
则 更新时,找到a在b数组中的位置,让此位置的数++,表示这个数出现了一次
查询的时候,输出第i/2+1个数,则让x=i/2+1,
如果root的左儿子的num>=x,则说明要找的数在左子树里,否则在右子树里,
如果是去右子树里找,则让x-=tree[root<<1].num,因为我们在右子树里要找的是第x-=tree[root<<1].num个。
*/
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std; const int N=1e5+; int n;
int a[N],b[N];
struct Tree
{
int l,r,mid;
int num;
}tree[N<<]; int read()
{
char c=getchar();int num=;
for(;!isdigit(c);c=getchar());
for(;isdigit(c);c=getchar())
num=num*+c-'';
return num;
} void build(int root,int l,int r)
{
tree[root].l=l,tree[root].r=r,tree[root].mid=l+r>>;
if(l==r)
return;
build(root<<,l,tree[root].mid);
build(root<<|,tree[root].mid+,r);
} void update(int root,int x)
{
++tree[root].num;
if(tree[root].l==tree[root].r)
return;
if(x<=tree[root].mid)
update(root<<,x);
else
update(root<<|,x);
} int query(int root,int num)
{
if(tree[root].l==tree[root].r)
return tree[root].l;
if(num<=tree[root<<].num)
return(query(root<<,num));
else
return(query(root<<|,num-tree[root<<].num));
} int main()
{
n=read();
for(int i=;i<=n;++i)
a[i]=read(),b[i]=a[i];
sort(b+,b+n+);
int bound=unique(b+,b+n+)-b;
build(,,n);
for(int i=;i<=n;++i)
{
int pos=lower_bound(b+,b+bound+,a[i])-b;
update(,pos);
if(i%)
printf("%d\n",b[query(,i/+)]);
}
return ;
}

P1168 中位数(线段树)的更多相关文章

  1. BZOJ 2653 middle (可持久化线段树+中位数+线段树维护最大子序和)

    题意: 左端点在[a,b],右端点在[c,d],求这个线段里中位数(上取整)最大值 思路: 对数组离散化,对每一个值建中位数的可持久化线段树(有重复也没事),就是对于root[i],大于等于i的值为1 ...

  2. 洛谷P1168 中位数——set/线段树

    先上一波链接 https://www.luogu.com.cn/problem/P1168 这道题我们有两种写法 第一种呢是线段树,我们首先需要将原本的数据离散化,线段树维护的信息就是区间内有多少个数 ...

  3. [2016湖南长沙培训Day4][前鬼后鬼的守护 chen] (动态开点线段树+中位数 or 动规 or 贪心+堆优化)

    题目大意 给定一个长度为n的正整数序列,令修改一个数的代价为修改前后两个数的绝对值之差,求用最小代价将序列转换为不减序列. 其中,n满足小于500000,序列中的正整数小于10^9 题解(引自mzx神 ...

  4. 【BZOJ-2653】middle 可持久化线段树 + 二分

    2653: middle Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1298  Solved: 734[Submit][Status][Discu ...

  5. Tsinsen A1505. 树(张闻涛) 倍增LCA,可持久化线段树,DFS序

    题目:http://www.tsinsen.com/A1505 A1505. 树(张闻涛) 时间限制:1.0s   内存限制:512.0MB    总提交次数:196   AC次数:65   平均分: ...

  6. HDU 5919 Sequence II(可持久化线段树)

    [题目链接]http://acm.hdu.edu.cn/showproblem.php?pid=5919 [题目大意] 给出一个数列,每次查询数列中,区间非重元素的下标的中位数.查询操作强制在线. [ ...

  7. poj 2010 Moo University - Financial Aid (贪心+线段树)

    转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove 骗一下访问量.... 题意大概是:从c个中选出n个 ...

  8. 【BZOJ4071】八邻旁之桥(线段树)

    [BZOJ4071]八邻旁之桥(线段树) 题面 BZOJ权限题,洛谷链接 题解 既然\(k<=2\) 那么,突破口就在这里 分类讨论 ①\(k=1\) 这...不就是中位数吗.... 直接把所有 ...

  9. P1168 中位数

    P1168 中位数树状数组+二分答案.树状数组就是起一个高效查询比二分出来的数小的有几个. #include<iostream> #include<cstdio> #inclu ...

随机推荐

  1. Spring Cloud Alibaba学习笔记(24) - Spring Boot Actuator 监控数据可视化:Spring Boot Admin

    我们都知道,Spring Boot Actuator 提供监控数据是Json数据,在某种程度来说并不利于分析查看,那么如何将其进行可视化呢?我们有很多种选择,但是目前在这个领域,最流行的是Spring ...

  2. oracle数据库 部分函数的用法

    select * from tab; //获取当前用户的数据库的所有表名 select sys_guid(),UserName from TESTLIKUI; //获取guid select sys_ ...

  3. MVC-09安全

    部分8:添加安全. MVC应用程序安全性 Models文件夹包含表示应用程序模型的类. Visual Web Developer自动创建AccountModels.cs文件,该文件包含用于应用程序认证 ...

  4. Net core 2.x 升级 3.0 使用自带 System.Text.Json 时区 踩坑经历

    .Net Core 3.0 更新的东西很多,这里就不多做解释了,官方和博园大佬写得很详细 关于 Net Core 时区问题,在 2.1 版本的时候,因为用的是 Newtonsoft.Json,配置比较 ...

  5. 前端开发 ECMAScript-1概述

    https://www.cnblogs.com/gaoya666/p/8560745.html ECMAScript是一种由Ecma国际(前身为欧洲计算机制造商协会,英文名称是European Com ...

  6. SQL*Plus 格式化查询结果

    为了在 SQL*Plus 环境中生成符合用户需要规范的报表,SQL*Plus 工具提供了多个用于格式化查询结果的命令,使用这些命令可以实现设置列的标题.定义输出值的显示格式和显示宽度.为报表增加头标题 ...

  7. vs code 调试设置

    首先vs code 安装插件:Debugger for Chrome vscode 设置:点击调试按钮,然后调试面板界面再点击设置按钮,添加一个配置,选择环境为:chrome编辑器自动生成一个laun ...

  8. Java编程规范(命名规则)

    1.目的 编程规范是对编程的一种约定,主要作用是增强代码的可读性和可维护性,便于代码重用. 2.命名规则 首先要求程序中的各个要素都遵守命名规则,然后在编码中严格按照编码格式编写代码.命名规则包括以下 ...

  9. Linux环境下安装RabbitMQ

    首先RabbitMQ是使用erLang编写的开源消息中间件.所以需要先安装erlang环境. 我使用的是CentOS的系统安装erlang21.0的步骤如下: #下载安装包 (下面是我用的比较匹配的版 ...

  10. Linux之redis-sentinel

    一,Redis-Sentinel介绍 Redis-Sentinel是redis官方推荐的高可用性解决方案,当用redis作master-slave的高可用时,如果master本身宕机,redis本身或 ...