被某大佬指出这是多项式板子!?

我们假设我们原始数列是\(a_i, c_i\), 旋转后的数列是\(a_i, b_i\),我们的增加量为x

\[\sum_{i = 1}^n(a_i - b_i + x)^2
\]

拆开平方得:

\[\sum_{i = 1}^na_i^2+b_i^2+x^2+2*x*a_i-2*x*b_i-2*a_i*b_1
\]

把这些东西分下类:

\[x^2*n+(\sum_{i=1}^na_i^2+b_i^2)+2*x*(\sum_{i = 1}^n a_i+b_i)+2*(\sum_{i = 1}^na_i*b_i)
\]

发现\(x\)只有\([-100, 100]\),我们考虑枚举x,然后就只有最后一堆是未知的

我们考虑怎么求最后一堆:两个值乘在一起的和,是不是和多项式有关系呢?

但这并不是一个卷积的形式,但我们考虑把b反向,原式就变成了:\(\sum_{i=1}^na_i*b_{n-i+1}\)

于是我们就可与愉快的用多项式来做这道题了。不会多项式?戳戳看?

把a数组倍长,把b数组反向,于是这道题的式子就成了:\(\sum_{i=1}^na_{i+k}c_{n-i+1}\),然后多项式的第\(n+1-2*n\)就分别代表\(k\)取\(0-n-1\)的值了

\(Code:\)

#include<bits/stdc++.h>
using namespace std;
#define il inline
#define re register
#define int long long
const double pi = acos(-1);
#define inf 12345678900000000
il int read() {
re int x = 0, f = 1; re char c = getchar();
while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - 48, c = getchar();
return x * f;
}
#define rep(i, s, t) for(re int i = s; i <= t; ++ i)
#define maxn 300005
struct node {
double x, y;
}a[maxn], b[maxn];
il node operator + (node a, node b) { return (node){a.x + b.x, a.y + b.y}; }
il node operator - (node a, node b) { return (node){a.x - b.x, a.y - b.y}; }
il node operator * (node a, node b) { return (node){a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x}; }
int n, m, lim, r[maxn], ans = inf, sum1, sum2, Ans = -inf;
il void FFT(node *a, int f, int len) {
rep(i, 0, len - 1) if(r[i] > i) swap(a[r[i]], a[i]);
for(re int mid = 1; mid < len; mid <<= 1) {
node base = (node){cos(pi / mid), f * sin(pi / mid)};
for(re int p = mid * 2, j = 0; j < len; j += p) {
node w = (node){1, 0};
for(re int k = 0; k < mid; ++ k, w = w * base) {
node x = a[j + k], y = a[j + k + mid] * w;
a[j + k] = x + y, a[j + k + mid] = x - y;
}
}
}
}
signed main() {
n = read(), m = read();
rep(i, 1, n) a[i].x = a[i + n].x = read();
rep(i, 1, n) b[n - i + 1].x = read();
rep(i, 1, n) sum1 += a[i].x * a[i].x + b[i].x * b[i].x, sum2 += a[i].x - b[i].x;
while((1 << lim) <= 3 * n) ++ lim;
rep(i, 0, (1 << lim)) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (lim - 1));
FFT(a, 1, (1 << lim)), FFT(b, 1, (1 << lim));
rep(i, 0, (1 << lim)) a[i] = a[i] * b[i];
FFT(a, -1, (1 << lim));
rep(x, -m, m) ans = min(ans, x * x * n + sum1 + 2 * x * sum2);
rep(i, n + 1, 2 * n) Ans = max(Ans, (int)(a[i].x / (1 << lim) + 0.5));
printf("%lld", ans - 2 * Ans);
return 0;
}

P3723 【[AH2017/HNOI2017]礼物】的更多相关文章

  1. 洛谷 P3723 [AH2017/HNOI2017]礼物 解题报告

    P3723 [AH2017/HNOI2017]礼物 题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一个送给她.每个手环上各有 \(n\) 个 ...

  2. [Luogu P3723] [AH2017/HNOI2017]礼物 (FFT 卷积)

    题面 传送门:洛咕 Solution 调得我头大,我好菜啊 好吧,我们来颓柿子吧: 我们可以只旋转其中一个手环.对于亮度的问题,因为可以在两个串上增加亮度,我们也可以看做是可以为负数的. 所以说,我们 ...

  3. P3723 [AH2017/HNOI2017]礼物

    题目链接:[AH2017/HNOI2017]礼物 题意: 两个环x, y 长度都为n k可取 0 ~ n - 1      c可取任意值 求 ∑ ( x[i] - y[(i + k) % n + 1] ...

  4. 洛谷P3723 [AH2017/HNOI2017]礼物(FFT)

    传送门 首先,两个数同时增加自然数值相当于只有其中一个数增加(此增加量可以小于0) 我们令$x$为当前的增加量,${a},{b}$分别为旋转后的两个数列,那么$$ans=\sum_{i=1}^n(a_ ...

  5. 洛谷P3723 [AH2017/HNOI2017]礼物

    吴迪说他化学会考上十分钟就想出来了,太神了%%%不过我也十分钟 但是调了一个多小时啊大草 懒得人话翻译了,自己康吧: 我的室友(真的是室友吗?)最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决 ...

  6. LUOGU P3723 [AH2017/HNOI2017]礼物 (fft)

    传送门 解题思路 首先我们设变化量为\(r\),那么最终的答案就可以写成 : \[ ans=min(\sum\limits_{i=1}^n(a_i-b_i+r)^2) \] \[ ans=min(\s ...

  7. 笔记-[AH2017/HNOI2017]礼物

    笔记-[AH2017/HNOI2017]礼物 [AH2017/HNOI2017]礼物 \[\begin{split} ans_i=&\sum_{j=1}^n(a_j-b_j+i)^2\\ =& ...

  8. BZOJ4827:[AH2017/HNOI2017]礼物——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4827 https://www.luogu.org/problemnew/show/P3723 题面 ...

  9. [AH2017/HNOI2017] 礼物 解题报告 (FFT)

    题目链接: https://www.luogu.org/problemnew/show/P3723 题目: 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自 ...

随机推荐

  1. [转]mongodb authentication 设置权限之后,新建个管理账户和一般数据库用户,在win 7 64bit 环境下测试使用实例

    如果之前安装mongodb时没有使用 --auth,那么必须要卸载MongoDB服务,进行重新安装,设置账号权限才生效! 主要是解决在测试使用mongo db 时候,总是出现的MongoAuthent ...

  2. PHP导出XML格式的EXCEL

    <?php function Export(){ set_time_limit(0); ob_start(); $biz = new ZaikuBiz(); $biz->setSearch ...

  3. thinkPHP中session()方法用法详解

    本文实例讲述了thinkPHP中session()方法用法.分享给大家供大家参考,具体如下: 系统提供了Session管理和操作的完善支持,全部操作可以通过一个内置的session函数完成. 用法 ? ...

  4. 【亲测有效】安装npm慢的解决方案

    使用淘宝的NPM库:npm install -gd express --registry=http://registry.npm.taobao.org

  5. 内存域水印值:min_free_kbytes

    1.内存域水印值:需要为关键性分配保留的内存空间的最小值:该值保存在全局变量min_free_kbytes中 2.内存域水印值的计算由函数init_per_zone_pages_min完成: /* * ...

  6. 计算机网络原理,TCP&UDP

    UDP伪首部:计算校验和时会用到,然后实际传输过程中里包含的IP地址没有什么用. UDP校验和计算:求数值之和,如果溢出回卷,最后求出反码;UDP伪首部,UDP首部,应用层数据相加 tcp报文,最短2 ...

  7. mac中git使用

    配置用户名及邮箱在使用Git提交前,必须配置用户名和邮箱,这些信息会永久保存到历史记录中.git config --global user.name "xxxxxx"git con ...

  8. 【转】高性能网络编程3----TCP消息的接收

    这篇文章将试图说明应用程序如何接收网络上发送过来的TCP消息流,由于篇幅所限,暂时忽略ACK报文的回复和接收窗口的滑动. 为了快速掌握本文所要表达的思想,我们可以带着以下问题阅读: 1.应用程序调用r ...

  9. 3.XPath

    使用XPath可以在不遍历xml文档的情况下选择具体节点. 转自https://www.cnblogs.com/vaevvaev/p/6928201.html XPath可以快速定位到Xml中的节点或 ...

  10. Redis的竞争并发该如何解决?

    这个也是线上非常常见的一个问题,就是多客户端同时并发写一个key,可能本来应该先到的数据后到了,导致数据版本错了.或者是多客户端同时获取一个key,修改值之后再写回去,只 要顺序错了,数据就错了. 而 ...