Flower:

传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6486

题解:

逆向思维+规律

因为每次剪n-1,所以逆向就是控制n-1朵不变,每次增高1朵,直到所有等高,即所有的高度都等于最高的那一朵,记录增高的次数为sum,反过来就是最高的那个减少sum,
如果减少sum后小于1则不成立,大于等于1,则需要减少sum次。
sum=每朵花与最高的差的和。

AC代码:

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
ll n;
scanf("%lld",&n);
int i;
ll a[];
for(i=;i<n;i++)
{
scanf("%lld",&a[i]);
}
sort(a,a+n);
ll sum=;
for(i=;i<n;i++)
{
sum+=(a[n-]-a[i]);
}
if(a[n-]-sum<)
printf("-1\n");
else
printf("%lld\n",sum);
}
return ;
}

Flower(规律+逆向思维)的更多相关文章

  1. IEEEXtreme 10.0 - Flower Games

    这是 meelo 原创的 IEEEXtreme极限编程比赛题解 题目来源 第10届IEEE极限编程大赛 https://www.hackerrank.com/contests/ieeextreme-c ...

  2. [Cqoi2015] 编号 【逆向思维,暴力枚举】

    Online Judge:Luogu-P4222 Label:逆向思维,暴力枚举 题目描述 你需要给一批商品编号,其中每个编号都是一个7位16进制数(由0~9, a-f组成).为了防止在人工处理时不小 ...

  3. hdu1452 Happy 2004(规律+因子和+积性函数)

    Happy 2004 题意:s为2004^x的因子和,求s%29.     (题于文末) 知识点: 素因子分解:n = p1 ^ e1 * p2 ^ e2 *..........*pn ^ en 因子 ...

  4. Codeforces Round #384 (Div. 2) B. Chloe and the sequence(规律题)

    传送门 Description Chloe, the same as Vladik, is a competitive programmer. She didn't have any problems ...

  5. ACM/ICPC 之 DP解有规律的最短路问题(POJ3377)

    //POJ3377 //DP解法-解有规律的最短路问题 //Time:1157Ms Memory:12440K #include<iostream> #include<cstring ...

  6. HDU 5795 A Simple Nim 打表求SG函数的规律

    A Simple Nim Problem Description   Two players take turns picking candies from n heaps,the player wh ...

  7. 微服务(Microservices)——Martin Flower【翻译】

    原文是 Martin Flower 于 2014 年 3 月 25 日写的<Microservices>. 本文内容 微服务 微服务风格的特性 组件化(Componentization ) ...

  8. Autumn is a second spring when every leaf is a flower.

    Autumn is a second spring when every leaf is a flower. 秋天即是第二个春天,每片叶子都是花朵.——阿尔贝·加缪

  9. 在sqlserver中做fibonacci(斐波那契)规律运算

    --利用sqlserver来运算斐波那契规律 --利用事物与存储过程 declare @number intdeclare @A intdeclare @B intdeclare @C int set ...

随机推荐

  1. 在jenkins中使用shell命令推送当前主机上的docker镜像到远程的Harbor私有仓库

    1.jenkins主机上的docker配置 先在Jenkins主机的docke上配置上Harbor私有仓库地址 cat /etc/docker/daemon.json { "insecure ...

  2. Computational biological hypothesis generation using "-omics" data

    Computational biological hypothesis generation using "-omics" data Forming biological hypo ...

  3. bootstrap 模态

    <script type="text/javascript" src="js/jquery-ui-custom.min.js"></scrip ...

  4. 【转载】C#中使用List集合的Insert方法在指定位置插入数据

    在C#的List集合等数据类型变量中,我们可以使用List集合的Insert方法在指定的索引位置插入一个新数据,例如指定在List集合的第一个位置写入一个新数据或者在List集合的中间某个位置插入个新 ...

  5. Selenium文件上传

    转自:https://www.cnblogs.com/miaojjblog/p/9679915.html Web上本地上传图片,弹出的框Selenium是无法识别的,也就是说,selenium本身没有 ...

  6. 大数据的前世今生【Hadoop、Spark】

      一.大数据简介 大数据是一个很热门的话题,但它是什么时候开始兴起的呢? 大数据[big data]这个词最早在UNIX用户协会的会议上被使用,来自SGI公司的科学家在其文章“大数据与下一代基础架构 ...

  7. js 数组的深度拷贝 的四种实现方法

    首先声明本人资质尚浅,本文只用于个人总结.如有错误,欢迎指正.共同提高. --------------------------------------------------------------- ...

  8. Cephfs 部署 创建 metadata 池 data池

    上一次部署了ceph分布式存储,接下来我们部署ceph的文件系统.Ceph文件系统至少需要两个RADOS池,一个用于数据,一个用于元数据. 创建metadata 池 后面数字表示 PG 和pgp数 c ...

  9. C 语言究竟是一门怎样的语言?

    C语言是计算机及其相关专业的必修课,很多编程爱好者也是从C语言开始的编程之旅. C语言之父镇楼! 相较于GO,python等语言而言C语言真可以算是老古董了(发明于上世纪70年代),但是也正因为其历史 ...

  10. ThreadStatic特性

    文章:ThreadStatic特性 地址:https://www.cnblogs.com/xuejietong/p/10997385.html 带有threadStaticAttribute标记的静态 ...