引言

  这篇论文深刻分析了one-stage的模型精度比two-stage更差的原因,并提出Focal Loss提高精度。

思路

  在论文中,作者指出,造成one-stage模型精度差的原因主要是:正负样本极不平衡。一张图片只有那么几个目标,但是用来分类的Anchor Box却能达到几千个,大量的样本都是负样本,而且大多数负样本都是容易分类的简单样本,这些简单样本的loss虽然低但是凭借着数量众多,能对loss有很大的贡献。因此分类器只用无脑判负也能达到不错的效果。

  作者提出的Focal Loss能很好减少简单样本对梯度的影响。

  相比于传统的CE(Pt)=-log(Pt)(这里Pt代表正负样本预测正确的可能性),Focal Loss在前面乘了一项(1-Pt)^r。

  为什么多了这一项就能减少简单样本对梯度的影响呢?

  可以看到,Pt越接近1表示这个样本预测正确的可能性越大,也就是这个样本越简单。而(1-Pt)^r这一项,显然是随着Pt的升高而减小,也就是样本越简单,Pt越小,Focal Loss整体的值也越小。这样就能减少简单样本对梯度的影响了。

  

  

  

  

目标检测论文解读12——RetinaNet的更多相关文章

  1. AAAI2019 | 基于区域分解集成的目标检测 论文解读

    Object Detection based on Region Decomposition and Assembly AAAI2019 | 基于区域分解集成的目标检测 论文解读 作者 | 文永亮 学 ...

  2. 目标检测论文解读5——YOLO v1

    背景 之前热门的目标检测方法都是two stage的,即分为region proposal和classification两个阶段,本文是对one stage方法的初次探索. 方法 首先看一下模型的网络 ...

  3. 目标检测论文解读1——Rich feature hierarchies for accurate object detection and semantic segmentation

    背景 在2012 Imagenet LSVRC比赛中,Alexnet以15.3%的top-5 错误率轻松拔得头筹(第二名top-5错误率为26.2%).由此,ConvNet的潜力受到广泛认可,一炮而红 ...

  4. 目标检测论文解读10——DSSD

    背景 SSD算法在检测小目标时精度并不高,本文是在在SSD的基础上做出一些改进,引入卷积层,能综合上下文信息,提高模型性能. 理解 Q1:DSSD和SSD的区别有哪些? (1)SSD是一层一层下采样, ...

  5. 目标检测论文解读13——FPN

    引言 对于小目标通常需要用到多尺度检测,作者提出的FPN是一种快速且效果好的多尺度检测方法. 方法 a,b,c是之前的方法,其中a,c用到了多尺度检测的思想,但他们都存在明显的缺点. a方法:把每图片 ...

  6. 目标检测论文解读9——R-FCN

    背景 基于ResNet 101的Faster RCNN速度很慢,本文通过提出Position-sensitive score maps(位置敏感分值图)来给模型加速. 方法 首先分析一下,为什么基于R ...

  7. 目标检测论文解读6——SSD

    背景 R-CNN系列算法检测速度不够快,YOLO v1检测准确率较低,而且无法检测到密集目标. 方法 SSD算法跟YOLO类似,都属于one stage的算法,即通过回归算法直接从原图得到预测结果,为 ...

  8. 目标检测论文解读4——Faster R-CNN

    背景 Fast R-CNN中的region proposal阶段所采用的SS算法成为了检测网络的速度瓶颈,本文是在Fast R-CNN基础上采用RPN(Region Proposal Networks ...

  9. 目标检测论文解读3——Fast R-CNN

    背景 deep ConvNet兴起,VGG16应用在图像分类任务上表现良好,本文用VGG16来解决检测任务.SPP NET存在CNN层不能fine tuning的缺点,且之前的方法训练都是分为多个阶段 ...

随机推荐

  1. python中多线程相关

    基础知识 进程:进程就是一个程序在一个数据集上的一次动态执行过程 数据集:程序执行过程中需要的资源 进程控制块:完成状态保存的单元 线程:线程是寄托在进程之上,为了提高系统的并发性 线程是进程的实体 ...

  2. SpringBoot中的日志

    默认情况下,Spring Boot会用SLF4J + Logback来记录日志,并用INFO级别输出到控制台. SLF4J,即简单日志门面(Simple Logging Facade for Java ...

  3. [LeetCode] 922. Sort Array By Parity II 按奇偶排序数组之二

    Given an array A of non-negative integers, half of the integers in A are odd, and half of the intege ...

  4. [LeetCode] 659. Split Array into Consecutive Subsequences 将数组分割成连续子序列

    You are given an integer array sorted in ascending order (may contain duplicates), you need to split ...

  5. [LeetCode] 486. Predict the Winner 预测赢家

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

  6. Shell脚本是什么、它是必需的吗?

    一个Shell脚本是一个文本文件,包含一个或多个命令.作为系统管理员,我们经常需要使用多个命令来完成一项任务,我们可以添加这些所有命令在一个文本文件(Shell脚本)来完成这些日常工作任务.

  7. 【redis】分布式锁实现,与分布式定时任务

    如果你还不知道redis的基本命令与基本使用方法,请看 [redis]redis基础命令学习集合 写在前面 redis辣么多数据结构,这么多命令,具体一点,都可以应用在什么场景呢?用来解决什么具体的问 ...

  8. sql server 索引优化

    查询实际执行计划,看走的是那种查询 要根据需求,建立合适的索引 经常需要汇总的,可以建立包含索引 --drop index ix_smssend_created on smssent_1 ; crea ...

  9. vs2019 更新之后无法用ctrl+d再设置回来..

    工具-选项-环境-键盘

  10. Spring Boot + Vue 前后端分离开发,权限管理的一点思路

    在传统的前后端不分的开发中,权限管理主要通过过滤器或者拦截器来进行(权限管理框架本身也是通过过滤器来实现功能),如果用户不具备某一个角色或者某一个权限,则无法访问某一个页面. 但是在前后端分离中,页面 ...