思路来自 某FXXL

不过复杂度咋算的..

/*
HDU 6091 - Rikka with Match [ 树形DP ] | 2017 Multi-University Training Contest 5
题意:
给出N个点的树,求去边的方案数使得 去边后最大匹配数是M的倍数
限制: N<=5e4, M<=200
分析:
设 DP[u][i][0] 表示 以点 u 为根的子树 最大匹配数模 m 为 i 时,且 u 点没有匹配的方案数
DP[u][i][1] 表示 以点 u 为根的子树 最大匹配数模 m 为 i 时,且 u 点匹配上的方案数
得到对于 u 的某个子节点 v 对 u 的更新(讨论(u,v)的边连与不连)
DP[u][k][0] += ∑ [i+j==k] 2 * DP[u][i][0] * DP[v][j][1] + 1 * DP[u][i][0] * DP[v][j][0]
DP[u][k][1] += ∑ [i+j==k] 2 * DP[u][i][1] * ( DP[v][j][0] + DP[v][j][1] )
DP[u][k][1] += ∑ [i+j==k-1] DP[u][i][0] * DP[v][j][0] 每次在合并的时候更新u节点的取值范围,即 size[u] = min(size[u]+size[v], m) 这样复杂度大概 O(nm)(???)
*/
#include <bits/stdc++.h>
using namespace std;
#define LL long long
const LL MOD = 998244353;
const int N = 5e4+5;
const int M = 205;
vector<int> G[N];
int t, n, m;
int size[N];
LL dp[N][M][2];
LL tmp[M<<1][2];
void solve(int u, int v)
{
memset(tmp, 0, sizeof(tmp));
for (int i = 0; i <= size[u]; i++)
for (int j = 0; j <= size[v]; j++)
{
tmp[i+j][1] += 2 * dp[u][i][1] * (dp[v][j][0]+dp[v][j][1]);
tmp[i+j][1] %= MOD;
tmp[i+j+1][1] += dp[u][i][0] * dp[v][j][0];
tmp[i+j+1][1] %= MOD;
tmp[i+j][0] += 2 * dp[u][i][0]*dp[v][j][1] + dp[u][i][0]*dp[v][j][0];
tmp[i+j][0] %= MOD;
}
for (int i = 0; i < m; i++)
{
dp[u][i][0] = (tmp[i][0] + tmp[i+m][0]) % MOD;
dp[u][i][1] = (tmp[i][1] + tmp[i+m][1]) % MOD;
}
size[u] = min(m, size[u]+size[v]);
}
void dfs(int u, int pre)
{
memset(dp[u], 0, sizeof(dp[u]));
dp[u][0][0] = 1;
size[u] = 1;
for (auto & v : G[u])
{
if (v == pre) continue;
dfs(v, u);
solve(u, v);
}
}
int main()
{
scanf("%d", &t);
while (t--)
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) G[i].clear();
for (int i = 1; i < n; i++)
{
int u, v; scanf("%d%d", &u, &v);
G[u].push_back(v);
G[v].push_back(u);
}
dfs(1, 1);
int ans = (dp[1][0][0]+dp[1][0][1]) % MOD;
printf("%d\n", ans);
}
}

  

HDU 6091 - Rikka with Match | 2017 Multi-University Training Contest 5的更多相关文章

  1. HDU 6091 - Rikka with Match

    思路 树形dp,设计状态如下: 设 $dp_u_i_0$表示 以点 u 为根的子树 最大匹配数模 m 为 i 时,且 u 点没有匹配的方案数 DP[u][i][1] 表示 以点 u 为根的子树 最大匹 ...

  2. HDU 6088 - Rikka with Rock-paper-scissors | 2017 Multi-University Training Contest 5

    思路和任意模数FFT模板都来自 这里 看了一晚上那篇<再探快速傅里叶变换>还是懵得不行,可能水平还没到- - 只能先存个模板了,这题单模数NTT跑了5.9s,没敢写三模数NTT,可能姿势太 ...

  3. HDU 6093 - Rikka with Number | 2017 Multi-University Training Contest 5

    JAVA+大数搞了一遍- - 不是很麻烦- - /* HDU 6093 - Rikka with Number [ 进制转换,康托展开,大数 ] | 2017 Multi-University Tra ...

  4. HDU 6085 - Rikka with Candies | 2017 Multi-University Training Contest 5

    看了标程的压位,才知道压位也能很容易写- - /* HDU 6085 - Rikka with Candies [ 压位 ] | 2017 Multi-University Training Cont ...

  5. HDU 6162 - Ch’s gift | 2017 ZJUT Multi-University Training 9

    /* HDU 6162 - Ch’s gift [ LCA,线段树 ] | 2017 ZJUT Multi-University Training 9 题意: N节点的树,Q组询问 每次询问s,t两节 ...

  6. HDU 6090 Rikka with Graph —— 2017 Multi-University Training 5

    Rikka with Graph Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  7. hdu 6088 Rikka with Rock-paper-scissors (2017 多校第五场 1004) 【组合数学 + 数论 + 模意义下的FFT】

    题目链接 首先利用组合数学知识,枚举两人的总胜场数容易得到 这还不是卷积的形式,直接搞的话复杂度大概是O(n^2)的,肯定会TLE.但似乎和卷积有点像?想半天没想出来..多谢Q巨提醒,才知道可以用下面 ...

  8. 2017 Wuhan University Programming Contest (Online Round) Lost in WHU 矩阵快速幂 一个无向图,求从1出发到达n最多经过T条边的方法数,边可以重复经过,到达n之后不可以再离开。

    /** 题目:Lost in WHU 链接:https://oj.ejq.me/problem/26 题意:一个无向图,求从1出发到达n最多经过T条边的方法数,边可以重复经过,到达n之后不可以再离开. ...

  9. 2017 Wuhan University Programming Contest (Online Round) C. Divide by Six 分析+模拟

    /** 题目:C. Divide by Six 链接:https://oj.ejq.me/problem/24 题意:给定一个数,这个数位数达到1e5,可能存在前导0.问为了使这个数是6的倍数,且没有 ...

随机推荐

  1. openjudge4979 - 海贼王之伟大航路 题解

    原题链接 题目简要分析 N个点,从1号点到N号点求最短路径,且每个点都要遍历到.现在要你求出最优方案. 这道题看到后,首先的想法莫过于搜索.暴力了.这显然不太可能.而进一步思考,使用Floyed和Di ...

  2. golang之defer

    概述 对于资源释放,有很多不同的实现方式,不同语言也有不同的惯用方法. C语言 :手动管理 Golang :defer Python :上下文管理器contexManager C++ : 作用域和析构 ...

  3. KNN-k近邻算法

    目录 KNN-k近邻算法 一.KNN基础 二.自己写一个knn函数 三.使用sklearn中的KNN 四.自己写一个面向对象的KNN 五.分割数据集 六.使用sklearn中的鸢尾花数据测试KNN 七 ...

  4. Service must be explitict android 5.0问题

    如果target到API 21,有一些注意的事项,以下是目前我发现的两个问题1. Service must be explitict,从Lollipop开始,service必须显性声明,解决方案:ht ...

  5. powerful number求积性函数前缀和

    算法原理 本文参考了 zzq's blog . \(\text{powerful number}\) 的定义是每个质因子次数都 \(\ge 2\) 的数,有个结论是 \(\ge n\) 的 \(\te ...

  6. 依赖注入 DI 控制反转 IOC 概念 案例 MD

    Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...

  7. 将整个 project 资源打包

    <build> <finalName>bootstrap</finalName> <sourceDirectory>${basedir}/src/mai ...

  8. Python进阶----异常处理

    Python进阶----异常处理 一丶错误和异常   错误:       语法错误(这种错误,根本过不了python解释器的语法检测,必须在程序执行前就改正) #语法错误示范一 if #语法错误示范二 ...

  9. unity点击按钮换按钮图标

    在做项目时,比如声音开关我们涉及到按钮的图标切换. using System.Collections; using System.Collections.Generic; using UnityEng ...

  10. Spring IOC 总结

    IOC 简介 IOC是(Inversion of Control,控制反转)的简写.Spring提供IOC容器,将对象间的依赖关系交由Spring进行控制,避免硬编码所造成的的过度程序耦合.它由DI( ...