题意翻译

题目大意: 给定一个n(n <= 50)个点的无向图,求它的点联通度。即最少删除多少个点,使得图不连通。

解析

网络瘤拆点最小割。

定理

最大流\(=\)最小割

感性地理解(口胡)一下:首先显然最大流\(<=\)割,而根据最大流定义,最小割恰恰就是要恰好割断最大流经过的所有最窄流量的边集,就能恰好使得源点和汇点不连通,即最大流\(=\)最小割。

至于具体的证明,我也不知道。

拆点

一般来说,正常的拆点有两个作用:

  1. 在不改变原图连通性的情况下,将点权转化为边权。
  2. 通过化点为边,限制通过某点的流量。

对于无向图和有向图,一般意义上的拆点做法是相同的。

一般做法:以有向图为例,对于原图中的一个点对\((x,y)\),且有一条有向边\(c(x,y)\)。我们将其分别拆成两个点\(x,x',y,y'\),然后\(x\rightarrow x',y\rightarrow y'\)这样连接有向边,如果原来的点有点权那么将有向边的边权赋值为点权,如果没有点权则赋值为1。对于原图存在的有向边,连接\(x'\rightarrow y\)。

对于无向边,我们再连一条边\(y'\rightarrow x\)即可。

那么对于本题,显然是一个求最少割点,我们转化为拆点最大流做。

注意可能有多组数据。

参考代码

#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<ctime>
#include<cstdlib>
#include<algorithm>
#include<queue>
#include<set>
#include<map>
#define INF 0x3f3f3f3f
#define N 110
using namespace std;
struct node{
int next,ver,leng;
}g[N<<1];
int tot,head[N],d[N],n,m,a[N],b[N],s,t;
inline void add(int x,int y,int val)
{
g[++tot].ver=y,g[tot].leng=val;
g[tot].next=head[x],head[x]=tot;
}
inline bool bfs()
{
memset(d,0,sizeof(d));
queue<int> q;
d[s]=1;q.push(s);
while(q.size()){
int x=q.front();q.pop();
for(int i=head[x];i;i=g[i].next){
int y=g[i].ver,z=g[i].leng;
if(!z||d[y]) continue;
d[y]=d[x]+1;
if(y==t) return 1;
q.push(y);
}
}
return 0;
}
inline int dinic(int x,int flow)
{
if(x==t) return flow;
int rest=flow;
for(int i=head[x];i&&rest;i=g[i].next){
int y=g[i].ver,z=g[i].leng;
if(!z||d[y]!=d[x]+1) continue;
int k=dinic(y,min(rest,z));
if(!k) d[y]=0;
else{
g[i].leng-=k;
g[i^1].leng+=k;
rest-=k;
}
}
return flow-rest;
}
int main()
{
while(~scanf("%d%d",&n,&m)){
int ans=INF;
for(int i=0;i<m;++i){
a[i]=b[i]=0;
char str[20];
scanf("%s",str);
int j=1;
while(str[j]!=',') a[i]=a[i]*10+str[j]-'0',++j;
j++;
while(str[j]!=')') b[i]=b[i]*10+str[j]-'0',++j;
}
for(s=0;s<n;++s)
for(t=0;t<n;++t){
if(s==t) continue;
memset(head,0,sizeof(head));
tot=1;
for(int i=0;i<n;++i)
if(i==s||i==t) add(i,i+n,INF),add(i+n,i,0);
else add(i,i+n,1),add(i+n,i,0);
for(int i=0;i<m;++i){
add(a[i]+n,b[i],INF),add(b[i]+n,a[i],INF);
add(b[i],a[i]+n,0),add(b[i],a[i]+n,0);
}
int now=0,tmp=0;
while(bfs())
while((now=dinic(s,INF))) tmp+=now;
ans=min(ans,tmp);
}
if(n<=1||ans==INF) ans=n;
cout<<ans<<endl;
}
return 0;
}

UVA1660 电视网络 Cable TV Network[拆点+最小割]的更多相关文章

  1. UVA1660 电视网络 Cable TV Network

    题目地址:UVA1660 电视网络 Cable TV Network 枚举两个不直接连通的点 \(S\) 和 \(T\) ,求在剩余的 \(n-2\) 个节点中最少去掉多少个可以使 \(S\) 和 \ ...

  2. POJ 1966 Cable TV Network 【经典最小割问题】

    Description n个点的无向图,问最少删掉几个点,使得图不连通 n<=50 m也许可以到完全图? Solution 最少,割点,不连通,可以想到最小割. 发现,图不连通,必然存在两个点不 ...

  3. POJ 1966 Cable TV Network (点连通度)【最小割】

    <题目链接> 题目大意: 给定一个无向图,求点连通度,即最少去掉多少个点使得图不连通. 解题分析: 解决点连通度和边连通度的一类方法总结见   >>> 本题是求点连通度, ...

  4. 【UVA1660】Cable TV Network

    题目大意:给定一个 N 个点的无向图,求至少删去多少个点可以使得无向图不连通. 题解:学习到了点边转化思想. 根据网络流的知识可知,一个网络的最小割与网络的最大流相等.不过最小割是图的边集,而本题则是 ...

  5. ZOJ 2182 Cable TV Network(无向图点割-最大流)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2182 题意:给出一个无向图,问最少删掉多少个顶点之后图变得不连通 ...

  6. POJ 1966 Cable TV NETWORK(网络流-最小点割集)

                                    Cable TV NETWORK The interconnection of the relays in a cable TV net ...

  7. POJ 1966 Cable TV Network

    Cable TV Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 4702   Accepted: 2173 ...

  8. POJ 1966 Cable TV Network(顶点连通度的求解)

                               Cable TV Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissi ...

  9. Cable TV Network 顶点连通度 (最大流算法)

    Cable TV Network 题目抽象:给出含有n个点顶点的无向图,给出m条边.求定点联通度   K 算法:将每个顶点v拆成 v'   v''  ,v'-->v''的容量为1.       ...

随机推荐

  1. QT源码分析:QTcpServer

    最近在看有关IO复用方面的内容,自己也用标准c++库实现了select模型.iocp模型.poll模型.回过头来很想了解QT的socket是基于什么模型来实现的,所以看了QT关于TcpServer实现 ...

  2. [资料]ObjectARX 2020参考指南翻译中文版

    chm使用Google Chrome浏览器翻译,有些翻译不是很理想,因为2万5千多个html文件, 修正难度太大,所以只处理了一部分. 非常感谢 gzxl 辛苦肉眼修正一些翻译问题. 欢迎进入QQ群: ...

  3. Linq查询连接guid与varchar字段

    使用场景 在数据库设计中进场会出现一些通用表,如通用附件表,一般都是通过ForeignTable(关联的表名)和ForeignKey(关联表的主键)与其他表关联.这样的表在数据库中没有外键关系,而且一 ...

  4. Oracle spatial空间查询的选择度分析

    在上一篇中,我用一个案例演示了对于数值或字符串类型的字段,选择度的计算方法.并证明了当字段值的选择度不同时,将会影响CBO选择最终的执行计划.对于可排序的字段类型,选择度计算模型已经有很多人写博客介绍 ...

  5. 在ensp上VLAN基础配置以及Access接口

    什么是VLAN? 早期的局域网技术是基于总线型的结构,也就是说所有主机共享一条传输线路.这就带来了很多问题:冲突域和安全问题.为了避免冲突域,我们使用二层交换机.但想想,一台计算机在总线上传输数据的时 ...

  6. LeetCode 653. 两数之和 IV - 输入 BST(Two Sum IV - Input is a BST)

    653. 两数之和 IV - 输入 BST 653. Two Sum IV - Input is a BST 题目描述 给定一个二叉搜索树和一个目标结果,如果 BST 中存在两个元素且它们的和等于给定 ...

  7. C++中的虚函数以及虚函数表

    一.虚函数的定义 被virtual关键字修饰的成员函数,目的是为了实现多态 ps: 关于多态[接口和实现分离,父类指针指向子类的实例,然后通过父类指针调用子类的成员函数,这样可以让父类指针拥有多种形态 ...

  8. c++无关类型指针的强制转换原理的分析和尝试

    因最近看到大量的c类型指针强制转换,联系到c++的reinterpret_cast强制转换符,故总结一下. 先上图 由图中可以看出,先声明了一个结构体t与一个含有三个元素的数组num,接着声明一个指向 ...

  9. bzoj 4500 矩阵 题解

    题意: 有一个 $ n * m $ 的矩阵,初始每个格子的权值都为 $ 0 $,可以对矩阵执行两种操作: 选择一行,该行每个格子的权值加1或减1. 选择一列,该列每个格子的权值加1或减1. 现在有 $ ...

  10. Vue框架基础02

    摘要 条件指令 循环指令 评论案例 实例成员之computed 实例成员之watch 分隔符 组件:局部组件和全局组件 局部组件与全局组件之间信息传输 一.条件指令扩展 <!DOCTYPE ht ...