大意: 定义$f(a)$表示序列$a$本质不同子序列个数. 给定$n,m$, 求所有长$n$元素范围$[1,m]$的序列的$f$值之和.

显然长度相同的子序列贡献是相同的.

不考虑空串, 假设长$x$, 枚举第一次出现位置, 可以得到贡献为$\sum\limits_{i=x}^n\binom{i-1}{x-1}(m-1)^{i-x}m^{n-i}$

总的答案就为$\sum\limits_{x=1}^n m^x \sum\limits_{i=x}^n\binom{i-1}{x-1}(m-1)^{i-x}m^{n-i}$

化简一下即可O(1)求出

Different Subsets For All Tuples CodeForces - 660E (组合计数)的更多相关文章

  1. Anton and School - 2 CodeForces - 785D (组合计数,括号匹配)

    大意: 给定括号字符串, 求多少个子序列是RSGS. RSGS定义如下: It is not empty (that is n ≠ 0). The length of the sequence is ...

  2. Singer House CodeForces - 830D (组合计数,dp)

    大意: 一个$k$层完全二叉树, 每个节点向它祖先连边, 就得到一个$k$房子, 求$k$房子的所有简单路径数. $DP$好题. 首先设$dp_{i,j}$表示$i$房子, 分出$j$条简单路径的方案 ...

  3. Intercity Travelling CodeForces - 1009E (组合计数)

    大意: 有一段$n$千米的路, 每一次走$1$千米, 每走完一次可以休息一次, 每连续走$x$次, 消耗$a[1]+...+a[x]$的能量. 休息随机, 求消耗能量的期望$\times 2^{n-1 ...

  4. Yet Another Problem On a Subsequence CodeForces - 1000D (组合计数)

    大意:定义一个长为$k>1$且首项为$k-1$的区间为好区间. 定义一个能划分为若干个好区间的序列为好序列. 给定序列$a$, 求有多少个子序列为好序列. 刚开始一直没想出来怎么避免重复计数, ...

  5. GukiZ and Binary Operations CodeForces - 551D (组合计数)

    大意: 给定$n,k,l,m$, 求有多少个长度为$n$, 元素全部严格小于$2^l$, 且满足 的序列. 刚开始想着暴力枚举当前or和上一个数二进制中$1$的分布, 但这样状态数是$O(64^3)$ ...

  6. Max History CodeForces - 938E (组合计数)

    You are given an array a of length n. We define fa the following way: Initially fa = 0, M = 1; for e ...

  7. Educational Codeforces Round 11 E. Different Subsets For All Tuples 动态规划

    E. Different Subsets For All Tuples 题目连接: http://www.codeforces.com/contest/660/problem/E Descriptio ...

  8. 【CF660E】Different Subsets For All Tuples 结论题

    [CF660E]Different Subsets For All Tuples 题意:对于所有长度为n,每个数为1,2...m的序列,求出每个序列的本质不同的子序列的数目之和.(多个原序列可以有相同 ...

  9. bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)

    黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...

随机推荐

  1. 【JZOJ6228】【20190621】ni

    题目 $ n $ 个数 $ E_i $ ,$ F(i) $ 表示对1-i的数任意排列 $ p $ ,初始 $ X=0 $ ,依次执行: \(X \lt E_{p_j} \ , \ X++\) $X \ ...

  2. 计蒜客 39279.Swap-打表找规律 (The 2019 ACM-ICPC China Shannxi Provincial Programming Contest L.) 2019ICPC西安邀请赛现场赛重现赛

    Swap There is a sequence of numbers of length nn, and each number in the sequence is different. Ther ...

  3. 第12组 Beta测试(5/5)

    Header 队名:To Be Done 组长博客 作业博客 团队项目进行情况 燃尽图(组内共享) 展示Git当日代码/文档签入记录(组内共享) 注: 由于GitHub的免费范围内对多人开发存在较多限 ...

  4. js中判断变量不为空或null

    var content=$("content").val(); if(!content){      alert("请输出内容!");      return; ...

  5. GO语言GIN框架入门

    Gin框架介绍 Gin是一个用Go语言编写的web框架.它是一个类似于martini但拥有更好性能的API框架, 由于使用了httprouter,速度提高了近40倍. 中文文档 Gin框架安装与使用 ...

  6. Prometheus监控神技--自动发现配置

    一.自动发现类型 在上一篇文中留了一个坑: 监控某个statefulset服务的时候,我在service文件中定义了个EP,然后把pod的ip写死在配置文件中,这样,当pod重启后,IP地址变化,就监 ...

  7. curl抓取页面时遇到重定向的解决方法

    用php的curl抓取网页遇到了问题,为阐述方便,将代码简化如下: <?php function curlGet($url) { $ch = curl_init(); curl_setopt($ ...

  8. gitignore文件示例

    /target/ !.mvn/wrapper/maven-wrapper.jar ### STS ### .apt_generated .classpath .factorypath .project ...

  9. pm2 工具来管理 node 服务端

    如下: nodeServer.js 'use strict'; const http = require('http'); const server = http.createServer(funct ...

  10. 事务管理(ACID)和事务的隔离级别

    https://blog.csdn.net/dengjili/article/details/82468576 谈到事务一般都是以下四点 原子性(Atomicity)原子性是指事务是一个不可分割的工作 ...