【CF1097F】Alex and a TV Show

题面

洛谷

题解

我们对于某个集合中的每个\(i\),令\(f(i)\)表示\(i\)作为约数出现次数的奇偶性。

因为只要因为奇偶性只有\(0,1\)两种,我们考虑用\(bitset\)维护这个\(f\)。

那么,

对于\(1\)操作你可以预处理一下\(v\)的\(bitset\),

对于\(2\)操作就是两个集合的\(bitset\)异或一下,

对于\(3\)操作就是两个集合的\(bitset\)与一下。

最后我们要由\(f(i)\)推回\(i\)的出现次数,记为\(g(i)\),显然有

\[f(n)=\sum_{d|n} g(d)
\]

莫比乌斯反演一下,

\[g(n)=\sum_{n|d} \mu (\frac dn) f(d)
\]

你对于每个\(n\)把\(n|d\)的\(\mu (\frac dn)\bmod 2\)预处理出来放在一个\(bitset\)就好了。

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <bitset>
using namespace std;
inline int gi() {
register int data = 0, w = 1;
register char ch = 0;
while (!isdigit(ch) && ch != '-') ch = getchar();
if (ch == '-') w = -1, ch = getchar();
while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar();
return w * data;
}
const int MAX_N = 1e5 + 5, MAX_M = 7005;
bitset<MAX_M> bs[MAX_N], fact[MAX_M], mu[MAX_M], m;
int N = 7000, Q;
void Prepare() {
m.set();
for (int i = 2; i * i <= N; i++)
for (int j = i * i; j <= N; j += i * i) m[j] = 0;
for (int i = 1; i <= N; i++)
for (int j = i; j <= N; j += i) fact[j][i] = 1, mu[i][j] = m[j / i];
} int main () {
#ifndef ONLINE_JUDGE
freopen("cpp.in", "r", stdin);
#endif
Prepare();
N = gi(), Q = gi();
while (Q--) {
int op = gi(), x = gi(), y = gi(), z;
if (op == 1) bs[x] = fact[y];
if (op == 2) z = gi(), bs[x] = bs[y] ^ bs[z];
if (op == 3) z = gi(), bs[x] = bs[y] & bs[z];
if (op == 4) printf("%lu", (bs[x] & mu[y]).count() & 1);
}
return 0;
}

【CF1097F】Alex and a TV Show的更多相关文章

  1. 【CF1097F】Alex and a TV Show(bitset)

    [CF1097F]Alex and a TV Show(bitset) 题面 洛谷 CF 题解 首先模\(2\)意义下用\(bitset\)很明显了. 那么问题在于怎么处理那个\(gcd\)操作. 然 ...

  2. 【Codeforces 1097F】Alex and a TV Show(bitset & 莫比乌斯反演)

    Description 你需要维护 \(n\) 个可重集,并执行 \(m\) 次操作: 1 x v:\(X\leftarrow \{v\}\): 2 x y z:\(X\leftarrow Y \cu ...

  3. retrofit okhttp RxJava bk Gson Lambda 综合示例【配置】

    项目地址:https://github.com/baiqiantao/retrofit2_okhttp3_RxJava_butterknife.git <uses-permission andr ...

  4. CF1097F Alex and a TV Show

    题目地址:CF1097F Alex and a TV Show bitset+莫比乌斯反演(个人第一道莫比乌斯反演题) 由于只关心出现次数的奇偶性,显然用bitset最合适 但我们并不直接在bitse ...

  5. [CodeForces-1225B] TV Subscriptions 【贪心】【尺取法】

    [CodeForces-1225B] TV Subscriptions [贪心][尺取法] 标签: 题解 codeforces题解 尺取法 题目描述 Time limit 2000 ms Memory ...

  6. 【Codeforces Round #442 (Div. 2) A】Alex and broken contest

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 注意是所有的名字里面,只出现了其中某一个名字一次. [代码] #include <bits/stdc++.h> usin ...

  7. Python高手之路【六】python基础之字符串格式化

    Python的字符串格式化有两种方式: 百分号方式.format方式 百分号的方式相对来说比较老,而format方式则是比较先进的方式,企图替换古老的方式,目前两者并存.[PEP-3101] This ...

  8. Python高手之路【三】python基础之函数

    基本数据类型补充: set 是一个无序且不重复的元素集合 class set(object): """ set() -> new empty set object ...

  9. 【原】AFNetworking源码阅读(五)

    [原]AFNetworking源码阅读(五) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 上一篇中提及到了Multipart Request的构建方法- [AFHTTP ...

随机推荐

  1. JSON转成List结构数据

    先要引入对应的jar,然后调用net.sf.json库的 ObjectMapper mapper = new ObjectMapper(); JavaType javaType = mapper.ge ...

  2. HDU 6148 (数位DP)

    ### HDU 6148 题目链接 ### 题目大意: 众所周知,度度熊非常喜欢数字. 它最近发明了一种新的数字:Valley Number,像山谷一样的数字. 当一个数字,从左到右依次看过去数字没有 ...

  3. Autoware 1.12 安装/DEMO

    前言 昨天试了一下新版本,发现完全按照官网安装会提示一些问题,所以留下记录. PS,我选择从源码安装Autoware 1.12 配置列表: 系统:Ubuntu 18.04 ROS:Melodic CU ...

  4. 自动轮播swiper css实现

    @keyframes scale { 0% { transform: scale(1, 1); opacity: 0.5; z-index:; transition: opacity z-index ...

  5. Elasticsearch 在业界的大量应用案例

    国内现在有大量的公司都在使用 Elasticsearch,包括携程.滴滴.今日头条.饿了么.360安全.小米.vivo等诸多知名公司.

  6. RabbitMQ系列(一)rabbitmq简介

    ------------恢复内容开始------------ 参考:https://www.cnblogs.com/vipstone/p/9275256.html RabbitMQ简介 在介绍Rabb ...

  7. vue服务端打包及自动部署

    上次给CI环境搭建好了,这次写了一个脚本用于服务端打包及部署使用,解决了前端需要频繁打包的问题,即时将代码推到工程库,服务端自动打包作发布,然后测试人员即时测试,尽早发现问题. 发布原理: 我没有通过 ...

  8. Java生鲜电商平台-源码地址公布与思考和建议

    Java生鲜电商平台-源码地址公布与思考和建议 说明:今天是承诺给大家的最后一天,我公布了github地址(QQ群里面有).诚然这个是我的计划中的事情,但是有以下几点思考请大家共勉: 1. 你下了那么 ...

  9. 有两个CIDR地址块208.128/11和208.130.28/22。是否有那一个地址块包含了另一个地址?如果有,请指出,并说明理由。

    有两个CIDR地址块208.128/11和208.130.28/22.是否有那一个地址块包含了另一个地址?如果有,请指出,并说明理由. 208.128/11的前缀为:11010000 100: 208 ...

  10. 智能家居-3.基于esp8266的语音控制系统(软件篇)

    智能家居-1.基于esp8266的语音控制系统(开篇) 智能家居-2.基于esp8266的语音控制系统(硬件篇) 智能家居-3.基于esp8266的语音控制系统(软件篇) 赞赏支持 QQ:505645 ...