【题解】Luogu P2447 [SDOI2010]外星千足虫
原题传送门
根据题意,题目给的每个操作就相当于异或上选中的那几只虫子的足数(mod 2)等于0/1
这是一个异或方程组,珂以用高斯消元解出每个虫子的足数(mod 2)、所需最小次数或判断有多解
但是看题目数据范围\(n \leq 1000,m \leq 2000\),如果直接高斯消元\(O(n^2m)\)的话超时无疑
观察这题的个性:方程组中要通过上下行异或进行消元,这是位运算,一定珂以用bitset优化
我们对每一行开一个bitset,这样消元时直接把两行的bitset异或起来,复杂度为\(O(\frac{n^2m}{\omega})\)
#include <bits/stdc++.h>
#define N 1005
#define M 2005
#define getchar nc
using namespace std;
inline char nc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int read()
{
register int x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*f;
}
inline void write(register int x)
{
if(!x)putchar('0');if(x<0)x=-x,putchar('-');
static int sta[20];register int tot=0;
while(x)sta[tot++]=x%10,x/=10;
while(tot)putchar(sta[--tot]+48);
}
inline int Max(register int x,register int y)
{
return x>y?x:y;
}
bitset<N> b[M];
int n,m,now,ans;
int main()
{
n=read(),m=read();
for(register int i=1;i<=m;++i)
for(register int j=1;j<=n+1;++j)
{
char ch=getchar();
while(ch!='0'&&ch!='1')
ch=getchar();
b[i][j]=ch-'0';
}
for(register int i=1;i<=n;++i)
{
now=i;
while(now<=m&&!b[now][i])
++now;
if(now==m+1)
{
puts("Cannot Determine");
return 0;
}
ans=Max(ans,now);
if(now!=i)
swap(b[i],b[now]);
for(register int j=1;j<=m;++j)
{
if(i==j||!b[j][i])
continue;
b[j]^=b[i];
}
}
write(ans),puts("");
for(register int i=1;i<=n;++i)
if(b[i][n+1])
puts("?y7M#");
else
puts("Earth");
return 0;
}
【题解】Luogu P2447 [SDOI2010]外星千足虫的更多相关文章
- Luogu P2447 [SDOI2010]外星千足虫
题意 给定 \(n\) 个变量和 \(m\) 个异或方程,求最少需要多少个才能确定每个变量的解. \(\texttt{Data Range:}1\leq n\leq 10^3,1\leq m\leq ...
- Luogu P2447 [SDOI2010]外星千足虫 高斯消元
链接 给出的条件是异或类型的方程,可以直接用bitset优化高斯消元. 至于求K,在高斯消元时记录用到的最大的方程的编号即可. 代码: // luogu-judger-enable-o2 #inclu ...
- P2447 [SDOI2010]外星千足虫 (高斯消元)
题目 P2447 [SDOI2010]外星千足虫 解析 sol写到自闭,用文字描述描述了半个小时没描述出来,果然还是要好好学语文 用高斯消元求解异或方程组. 因为 \(奇数\bigoplus奇数=偶数 ...
- 洛谷 P2447 [SDOI2010]外星千足虫
P2447 [SDOI2010]外星千足虫 题目描述 公元2089年6月4日,在经历了17年零3个月的漫长旅行后,“格纳格鲁一号”载人火箭返回舱终于安全着陆.此枚火箭由美国国家航空航天局(NASA)研 ...
- 【P2447 [SDOI2010]外星千足虫】 题解
题目链接:https://www.luogu.org/problemnew/show/P2447 dalao们都说简单...解异或方程组 可我不是dalao qwq #include <algo ...
- [洛谷P2447][SDOI2010]外星千足虫
题目大意:有$n$个数,每个数为$0$或$1$,给你其中一些关系,一个关系形如其中几个数的异或和是多少,问最少知道前几个关系就可以得出每个数是什么,并输出每个数 题解:异或方程组,和高斯消元差不多,就 ...
- 洛谷P2447 [SDOI2010]外星千足虫(异或方程组)
题意 题目链接 Sol 异或高斯消元的板子题. bitset优化一下,复杂度\(O(\frac{nm}{32})\) 找最优解可以考虑高斯消元的过程,因为异或的特殊性质,每次向下找的时候找到第一个1然 ...
- 【题解】 bzoj1923: [Sdoi2010]外星千足虫 (线性基/高斯消元)
bzoj1923,戳我戳我 Solution: 这个高斯消元/线性基很好看出来,主要是判断在第K 次统计结束后就可以确定唯一解的地方和\(bitset\)的骚操作 (我用的线性基)判断位置,我们可以每 ...
- 洛咕 P2447 [SDOI2010]外星千足虫
一开始以为是异或高斯消元,实际上是简单线性基. 直接往线性基里插入,直到线性基满了就解出来了. // luogu-judger-enable-o2 #include<bits/stdc++.h& ...
随机推荐
- maven 学习---如何从Maven远程存储库下载?
根据 Apache Maven 的说明: Downloading in Maven is triggered by a project declaring a dependency that is n ...
- 【剑指 offer】数组中重复的数字 -- PHP 实现
题目描述 在一个长度为n的数组里的所有数字都在0到n-1的范围内. 数组中某些数字是重复的,但不知道有几个数字是重复的.也不知道每个数字重复几次.请找出数组中任意一个重复的数字. 例如,如果输入长度为 ...
- linux Yum相关
python编写,是centos 和 redhat的包管理工具,类似于 pip 常用的yum命令 Yum list 查看所有的包 Yum list python 列出所有python包 yum sea ...
- linux函数深入探索——open函数打开文件是否将文件内容加载到内存空间
转自:https://blog.csdn.net/qq_17019203/article/details/85051627 问题:open(2)函数打开文件是否将文件内容加载到内存空间 首先,文件打开 ...
- Congigure SSL in StoreFront
StoreFront SSL Requirements StoreFront website must be up and running in http Joined to the domain C ...
- Traefik HTTPS 配置
参考 add-a-tls-certificate-to-the-ingress Entry Points Definition 使用traefik作为ingress controller透出集群中的h ...
- JavaScript三种方法获取地址栏参数的方法
今天碰到要在一个页面获取另外一个页面url传过来的参数,一开始很本能的想到了用 split(“?”)这样一步步的分解出需要的参数. 后来想了一下,肯定会有更加简单的方法的!所以在网上找到了两个很又简单 ...
- LOJ 3158: 「NOI2019」序列
题目传送门:LOJ #3158. 题意简述: 给定两个长度为 \(n\) 的正整数序列 \(a,b\),要求在每个序列中都选中 \(K\) 个下标,并且要保证同时在两个序列中都被选中的下标至少有 \( ...
- 字符串format()方法的基本使用
<模板字符串>.format(<逗号分隔的参数>) 其中,模板字符串是一个由字符串和槽组成的字符串,用来控制字符串和变量的显示效果.槽用大括号({})表示,对应format() ...
- SpringBoot——配置文件详解【五】
前言 SpringBoot的配置文件 配置文件 SpringBoot使用一个全局的配置文件,配置文件名是固定的. application.properties application.yml 配置文件 ...