反素数 Antiprime(信息学奥赛一本通 1625)(洛谷 1463)
题目描述
对于任何正整数x,其约数的个数记作g(x)。例如g(1)=1、g(6)=4。
如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数。例如,整数1,2,4,6等都是反质数。
现在给定一个数N,你能求出不超过N的最大的反质数么?
输入格式
一个数N(1<=N<=2,000,000,000)。
输出格式
不超过N的最大的反质数。
输入输出样例
1000
输出 #1
840
2019/8/21-更新(代码后面写不了了,只能写在前面...):
上午刚做的题,下午老师就讲了,搞得我好像白写了题解o(一︿一+)o,所以就顺便把老师的课件附上来吧!
(别忘了后面还有我自己写的...






首先普及下关于“反素数”的两个性质:
性质一:一个反素数的质因子必然是从2开始连续的质数.
性质二:p=2^t1*3^t2*5^t3*7^t4.....必然t1>=t2>=t3>=....
然后,我再说下我个人的理解
因为题目给出了n的范围,所以我们可得出结论:n的质因子的种数不超过10,所以得到了一条递归边界;
因为“反素数”的性质二,所以在两个数约数相等的情况下,更小的那个数就是“反素数”(可以用反证法证明:如果存在a的约数个数与b相等,且a>b。若认为a为“反素数”,那么不满足小于a的数的约数个数都小于a的约数个数,矛盾;)。所以我们要求的答案显然就是不大于n的 约数个数最大的 最小的数(哇这句话真的要好好理解,性质二肥肠关键!;
那么应用到本题,在递归的过程中,如果遇到两个数约数个数相同,并且当前得到的数now小于之前得到的数ans,那就更新ans;如果当前求得的数now的约数个数num已经大于之前求到的最大的约数个数tot,那就更新tot,并且别忘了也要更新ans;
如果在递归过程中,当前求得值已经大于n,那么就没必要再继续递归下去,直接返回,这就是第二条递归边界;
在递归函数中设置一个循环,每进行一个循环,当前递归的质因子的个数就加一,并且此处还可以进行一点剪枝,在循环条件中加入“当前递归的质因子个数 不大于 比其小的质因子的 个数”这个条件;
我在这里给出两种代码,思想大概就是我上面所述,只不过写法略有不同,大家可以选择自己更喜欢的一种啦~
(顺便,看我码字不易,怎么说也给个“推荐”吧♪(^∀^●)ノ
#include<bits/stdc++.h>
using namespace std;
const int N=1e6+,inf=0x3f3f3f3f;
int a[]={,,,,,,,,,,};//打表大法好(质因子种数不超过10)
long long n,ans,tot;//tot为求到的最大的约数个数
void f(long long x,long long now,long long shu,long long num)
{
//x为当前递归的质因子,now为当前求得的数,num为now的约数个数
if(x==)return ;//递归边界1
long long tmp=,i;
for(i=;i<=shu;i++)//当前递归的质因子的个数不超过shu(想不到其他变量名惹...无奈词汇量太小)
{
tmp*=a[x];//tmp暂时存储
if(now*tmp>n)return ;//递归边界2
if(num*(i+)==tot&&now*tmp<ans)ans=now*tmp;//如果约数个数相同,并且当前得到的数now小于之前得到的数ans,那就更新ans;
if(num*(i+)>tot)//如果now的约数个数num大于之前求到的最大的约数个数tot,那就更新tot,并且更新ans;
{
tot=num*(i+);
ans=now*tmp;
}
f(x+,now*tmp,i,num*(i+));//往下递归
}
}
int main()
{
cin>>n;
f(,,,);
printf("%lld",ans);
return ;
}
我比较喜欢下面的代码↓↓↓
#include<bits/stdc++.h>
using namespace std;
const int N=1e6+,inf=<<;
int a[]={,,,,,,,,,,},used[];//used[i]是指表中第i个质因子的个数
long long n,ans,tot;
void f(long long id,long long now,long long num)
{
//id指当前递归的是表中的第几个质数,now和num同上一种做法
if(num>tot)//同上一种做法
{
ans=now;
tot=num;
}
if(num==tot&&now<ans)ans=now;//同上一种做法
used[id]=;//注意每次递归要更新
while(now*a[id]<=n&&used[id]+<=used[id-])//循环条件中也包含了递归边界2(然鹅这里没有用递归边界1
{
now*=a[id];//now更新
used[id]++;//当前递归的质因子个数加一
f(id+,now,num*(used[id]+));//继续递归
}
}
int main()
{
cin>>n;
used[]=inf;//注意!要保证在对第一个质数进行递归的时候,循环可以进行下去,详见used[id]+1<=used[id-1]
f(,,);
printf("%lld",ans);
return ;
}
反素数 Antiprime(信息学奥赛一本通 1625)(洛谷 1463)的更多相关文章
- 一本通1625【例 1】反素数 Antiprime
反素数 Antiprime 题目描述 原题来自:POI 2001 如果一个大于等于 1 的正整数 n,满足所有小于 n 且大于等于 1 的所有正整数的约数个数都小于 n 的约数个数,则 n 是一个反素 ...
- 1625: 【例 1】反素数 Antiprime
1625: [例 1]反素数 Antiprime [题目描述] 原题来自:POI 2001 如果一个大于等于 1 的正整数 n,满足所有小于 n 且大于等于 1 的所有正整数的约数个数都小于 n 的约 ...
- $ybt\ 【信息学奥赛一本通】题解目录$
[信息学奥赛一本通]题解目录 $ \large -> OJ$ $ problem1000 $ \(Answer\) - > $ \large 1000$ $ problem1001 $ \ ...
- 【03NOIP普及组】麦森数(信息学奥赛一本通 1925)(洛谷 1045)
[题目描述] 形如2P-1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果P是个素数,2P-1不一定也是素数.到1998年底,人们已找到了37个麦森数.最大的一个是P=3021377,它 ...
- 「SDOI2014」旅行(信息学奥赛一本通 1564)(洛谷 3313)
题目描述 S国有N个城市,编号从1到N.城市间用N-1条双向道路连接,满足从一个城市出发可以到达其它所有城市.每个城市信仰不同的宗教,如飞天面条神教.隐形独角兽教.绝地教都是常见的信仰. 为了方便,我 ...
- 【00NOIP普及组】计算器的改良(信息学奥赛一本通 1910)(洛谷 1022)
[题目描述] NCL是一家专门从事计算器改良与升级的实验室,最近该实验室收到了某公司所委托的一个任务:需要在该公司某型号的计算器上加上解一元一次方程的功能.实验室将这个任务交给了一个刚进入的新手ZL先 ...
- 【00NOIP普及组】税收与补贴问题(信息学奥赛一本通 1911)( 洛谷 1023)
[题目描述] 每样商品的价格越低,其销量就会相应增大.现已知某种商品的成本及其在若干价位上的销量(产品不会低于成本销售),并假设相邻价位间销量的变化是线性的且在价格高于给 定的最高价位后,销量以某固定 ...
- 食物链【NOI2001】(信息学奥赛一本通 1390)
[题目描述] 动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形.A吃B, B吃C,C吃A. 现有N个动物,以1-N编号.每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种 ...
- 【NOI2002】荒岛野人(信息学奥赛一本通 1637)(洛谷 2421)
题目描述 克里特岛以野人群居而著称.岛上有排列成环行的M个山洞.这些山洞顺时针编号为1,2,…,M.岛上住着N个野人,一开始依次住在山洞C1,C2,…,CN中,以后每年,第i个野人会沿顺时针向前走Pi ...
随机推荐
- Angular复习笔记7-路由(下)
Angular复习笔记7-路由(下) 这是angular路由的第二篇,也是最后一篇.继续上一章的内容 路由跳转 Web应用中的页面跳转,指的是应用响应某个事件,从一个页面跳转到另一个页面的行为.对于使 ...
- Kubeadm 1.9 HA 高可用集群本地离线镜像部署【已验证】
k8s介绍 k8s 发展速度很快,目前很多大的公司容器集群都基于该项目,如京东,腾讯,滴滴,瓜子二手车,易宝支付,北森等等. kubernetes1.9版本发布2017年12月15日,每三个月一个迭代 ...
- org.springframework.stereotype
org.springframework.stereotype 1.@controller 控制器(注入服务) 2.@service 服务(注入dao) 3.@repository dao(实现dao访 ...
- Beyond Compare 4 30天评估期结束的解决办法
修改注册表 regedit注册表中删除项目:HKEY_CURRENT_USER\Software\Scooter Software\Beyond Compare 4\CacheId 删除dll 重命名 ...
- tomcat添加https服务
系统环境: centos6.7 jdk-7u79-linux-x64 apache-tomcat-7.0.57 apr-1.5.2 apr-util-1.5.4 一.tomcat安装 自己准备tomc ...
- Vue学习之监听methods、watch及computed比较小结(十一)
一.三者之间的对比: 1.methods方法表示一个具体的操作,主要书写业务逻辑: 2.watch:一个对象,键是需要观察的表达式,值是对应回调函数.主要用来监听某些特定数据的变化,从而进行某些具体业 ...
- 【python】多任务(1. 线程)
线程执行的顺序是不确定,可以通过适当的延时,保证某一线程先执行 基础语法 # 多线程的使用方式 import threading def test1():... # 如果创建Thread时执行的函数, ...
- SQL-连接查询:left join,right join,inner join,full join之间的区别
参考: https://www.cnblogs.com/lijingran/p/9001302.html https://www.cnblogs.com/assasion/p/7768931.html ...
- phpstorm goland webstorm jetbrain
1.去官网搞点安装包2.下载完之后一定要打开一下否则个别机型会出现包已损坏的错误提示3.下载Jet Brains License链接:https://pan.baidu.com/s/10nRk7Gei ...
- FRP 中文文档
https://github.com/fatedier/frp/blob/master/README_zh.md README | 中文文档 frp 是一个可用于内网穿透的高性能的反向代理应用,支持 ...