当你想要对图像设置transforms策略时,如:

from torchvision import transforms as T

normalize = T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
data_transforms = {
'train': T.Compose([
T.RandomResizedCrop(), # 从图片中心截取
T.RandomHorizontalFlip(), # 随机水平翻转给定的PIL.Image,翻转概率为0.
T.ToTensor(), # 转成Tensor格式,大小范围为[,]
normalize
]), 'val': T.Compose([
T.Resize(), # 重新设定大小
T.CenterCrop(),
T.ToTensor(),
normalize
]),
}

但是有时官方提供的方法并不能够满足你的需要,这时候你就需要自定义自己的transform策略

方法就是使用transforms.Lambda

举例说明:

比如当我们想要截取图像,但并不想在随机位置截取,而是希望在一个自己指定的位置去截取

那么你就需要自定义一个截取函数,然后使用transforms.Lambda去封装它即可,如:

# coding:utf-
from torchvision import transforms as T def __crop(img, pos, size):
"""
:param img: 输入的图像
:param pos: 图像截取的位置,类型为元组,包含(x, y)
:param size: 图像截取的大小
:return: 返回截取后的图像
"""
ow, oh = img.size
x1, y1 = pos
tw = th = size
# 有足够的大小截取
# img.crop坐标表示 (left, upper, right, lower)
if (ow > tw or oh > th):
return img.crop((x1, y1, x1+tw, y1+th))
return img # 然后使用transforms.Lambda封装其为transforms策略
# 然后定义新的transforms为
normalize = T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
data_transforms = T.Compose([
T.Lambda(lambda img: __crop(img, (,), )),
T.RandomHorizontalFlip(), # 随机水平翻转给定的PIL.Image,翻转概率为0.
T.ToTensor(), # 转成Tensor格式,大小范围为[,]
normalize
])

pytorch transforms.Lambda的使用的更多相关文章

  1. PyTorch 介绍 | TRANSFORMS

    数据并不总是满足机器学习算法所需的格式.我们使用transform对数据进行一些操作,使得其能适用于训练. 所有的TorchVision数据集都有两个参数,用以接受包含transform逻辑的可调用项 ...

  2. 【pytorch报错解决】expected input to have 3 channels, but got 1 channels instead

    遇到的问题 数据是png图像的时候,如果用PIL读取图像,获得的是单通道的,不是多通道的.虽然使用opencv读取图片可以获得三通道图像数据,如下: def __getitem__(self, idx ...

  3. pytorch资料

    torchvision是独立于pytorch的关于图像操作的一些方便工具库. torchvision的详细介绍在:https://pypi.org/project/torchvision/ torch ...

  4. Pytorch Torchvision Transform

    Torchvision.Transforms Transforms包含常用图像转换操作.可以使用Compose将它们链接在一起. 此外,还有torchvision.transforms.functio ...

  5. pytorch(10)transform模块(进阶)

    图像变换 Pad 对图片边缘进行填充 transforms.Pad(padding,fill=0,padding_mode='constant') padding:设置填充大小,(a,b,c,d)左上 ...

  6. torchvision库简介(翻译)

    部分跟新于:4.24日    torchvision 0.2.2.post3 torchvision是独立于pytorch的关于图像操作的一些方便工具库. torchvision的详细介绍在:http ...

  7. 行人重识别(ReID) ——基于Person_reID_baseline_pytorch修改业务流程

    下载Person_reID_baseline_pytorch地址:https://github.com/layumi/Person_reID_baseline_pytorch/tree/master/ ...

  8. TorchVision Faster R-CNN 微调,实战 Kaggle 小麦检测

    本文将利用 TorchVision Faster R-CNN 预训练模型,于 Kaggle: 全球小麦检测 上实践迁移学习中的一种常用技术:微调(fine tuning). 本文相关的 Kaggle ...

  9. PyTorch源码解读之torchvision.transforms(转)

    原文地址:https://blog.csdn.net/u014380165/article/details/79167753 版权声明:本文为博主原创文章,未经博主允许不得转载. https://bl ...

随机推荐

  1. 过采样中用到的SMOTE算法

    平时很多分类问题都会面对样本不均衡的问题,很多算法在这种情况下分类效果都不够理想.类不平衡(class-imbalance)是指在训练分类器中所使用的训练集的类别分布不均.比如说一个二分类问题,100 ...

  2. arp和rarp协议

    ARP与RARP详细解析 原创zlnnjit 发布于2016-04-03 15:12:15 阅读数 9544 收藏 展开 地址解析协议 ARP和逆地址解析协议RARP 1.基本关系: ​ 2.地址解析 ...

  3. python链接oracle数据库以及数据库的增删改查实例

    初次使用python链接oracle,所以想记录下我遇到的问题,便于向我这样初次尝试的朋友能够快速的配置好环境进入开发环节. 1.首先,python链接oracle数据库需要配置好环境. 我的相关环境 ...

  4. python 使用 jt400.jar

    jt400helper.py #coding=utf-8 import jpype import os class JT400Helper(object): def __init__(self, se ...

  5. leetcode解题报告(26):Add Binary

    描述 Given two binary strings, return their sum (also a binary string). For example, a = "11" ...

  6. poj 3735 稀疏矩阵矩阵快速幂

    设人数为 $n$,构造 $(n + 1) \times (n + 1)$ 的矩阵 得花生:将改行的最后一列元素 $+ 1$ \begin{gather}\begin{bmatrix}1 & 0 ...

  7. CodefChef September Challenge 2019 题解

    传送门 \(CHEFK1\) 首先连出一个环和所有的自环,剩下的每次按\(n\)个一连就可以了 //quming #include<bits/stdc++.h> #define R reg ...

  8. 记一次清理缓存的小事情(chrome) chrome下清理缓存不生效的问题

    记一次清理缓存的小事情(chrome) chrome下清理缓存不生效的问题 前端开发中会经常涉及清理缓存的事情. 在一次开发后, 需要清理缓存,一个哥们怎么清理都不生效, 于是向我求救. 在我看了下后 ...

  9. python中range语法

    规则:一般不取最后一位 start: 计数从 start 开始.默认是从 0 开始.例如range(5)等价于range(0, 5); stop: 计数到 stop 结束,但不包括 stop.例如:r ...

  10. 第12组 Alpha冲刺(1/6)

    Header 队名:To Be Done 组长博客 作业博客 团队项目进行情况 燃尽图(组内共享) 展示Git当日代码/文档签入记录(组内共享) 注: 由于GitHub的免费范围内对多人开发存在较多限 ...