[Usaco2011 Feb]Generic Cow Protests
Description
Farmer John's N (1 <= N <= 100,000) cows are lined up in a row and
numbered 1..N. The cows are conducting another one of their strange
protests, so each cow i is holding up a sign with an integer A_i
(-10,000 <= A_i <= 10,000).
FJ knows the mob of cows will behave if they are properly grouped
and thus would like to arrange the cows into one or more contiguous
groups so that every cow is in exactly one group and that every
group has a nonnegative sum.
Help him count the number of ways he can do this, modulo 1,000,000,009.
By way of example, if N = 4 and the cows' signs are 2, 3, -3, and
1, then the following are the only four valid ways of arranging the
cows:
(2 3 -3 1)
(2 3 -3) (1)
(2) (3 -3 1)
(2) (3 -3) (1)
Note that this example demonstrates the rule for counting different
orders of the arrangements.
给出n个数,问有几种划分方案(不能改变数的位置),使得每组中数的和大于等于0。输出方案数除以 1000000009的余数。
Input
- Line 1: A single integer: N
- Lines 2..N + 1: Line i + 1 contains a single integer: A_i
Output
- Line 1: A single integer, the number of arrangements modulo
1,000,000,009.
Sample Input
4
2
3
-3
1
Sample Output
4
本题很容易想到一个N^2 DP,即 $$ f(i)=\sum_{j=1}^{i-1} f(j),(sum[i]-sum[j]>=0)$$ 不过肯定会T就是了。我们考虑每次转移只考虑到sum[i]与sum[j]的大小关系,于是我们只要将前缀和离散化一下然后丢到树状数组里处理下就好了
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define lowbit(x) ((x)&(-x))
#define inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline int read(){
int x=0,f=1;char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+ch-'0';
return x*f;
}
inline void print(int x){
if (x>=10) print(x/10);
putchar(x%10+'0');
}
const int N=1e5,mod=1e9+9;
int tree[N+10],sum[N+10],f[N+10];
int n,T,ans;
struct AC{
int x,ID;
void join(int a,int b){x=a,ID=b;}
bool operator <(const AC &a)const{return x!=a.x?x<a.x:ID<a.ID;}
}A[N+10];
void insert(int x,int v){for (;x<=n;x+=lowbit(x)) tree[x]=(tree[x]+v)%mod;}
int query(int x){
int res=0;
for (;x;x-=lowbit(x)) res=(res+tree[x])%mod;
return res;
}
int main(){
n=read();
for (int i=1;i<=n;i++) A[i].join(A[i-1].x+read(),i),f[i]=(A[i].x>=0);
sort(A+1,A+1+n);
for (int i=1;i<=n;i++) sum[A[i].ID]=i;
for (int i=1;i<=n;i++) insert(sum[i],f[i]=(f[i]+query(sum[i]))%mod);
printf("%d\n",f[n]);
return 0;
}
[Usaco2011 Feb]Generic Cow Protests的更多相关文章
- BZOJ2274: [Usaco2011 Feb]Generic Cow Protests
2274: [Usaco2011 Feb]Generic Cow Protests Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 196 Solve ...
- 【bzoj2274】[Usaco2011 Feb]Generic Cow Protests dp+树状数组
题目描述 Farmer John's N (1 <= N <= 100,000) cows are lined up in a row andnumbered 1..N. The cows ...
- BZOJ 2274 [Usaco2011 Feb]Generic Cow Protests
[题解] 很容易可以写出朴素DP方程f[i]=sigma f[j] (sum[i]>=sum[j],1<=j<=i). 于是我们用权值树状数组优化即可. #include<c ...
- USACO 奶牛抗议 Generic Cow Protests
USACO 奶牛抗议 Generic Cow Protests Description 约翰家的N头奶牛聚集在一起,排成一列,正在进行一项抗议活动.第i头奶牛的理智度 为Ai,Ai可能是负数.约翰希望 ...
- 【BZOJ】【3301】【USACO2011 Feb】Cow Line
康托展开 裸的康托展开&逆康托展开 康托展开就是一种特殊的hash,且是可逆的…… 康托展开计算的是有多少种排列的字典序比这个小,所以编号应该+1:逆运算同理(-1). 序列->序号:( ...
- 洛谷 2344 奶牛抗议 Generic Cow Protests, 2011 Feb
[题解] 我们可以轻松想到朴素的状态转移方程,但直接这样做是n^2的.所以我们考虑采用树状数组优化.写法跟求逆序对很相似,即对前缀和离散化之后开一个权值树状数组,每次f[i]+=query(sum[i ...
- [USACO11FEB]Generic Cow Protests
思路: 动态规划.首先处理出这些数的前缀和$a$,$f_i$记录从第$1$位到第$i$位的最大分组数量.DP方程为:$f_i=max(f_i,f_j+1)$,其中$j$满足$a_i-a_j≥0$. # ...
- BZOJ3301: [USACO2011 Feb] Cow Line
3301: [USACO2011 Feb] Cow Line Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 67 Solved: 39[Submit ...
- 3301: [USACO2011 Feb] Cow Line
3301: [USACO2011 Feb] Cow Line Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 82 Solved: 49[Submit ...
随机推荐
- IE浏览器不能上传图片
这时将弹出一个“安全设置-Internet选项”对话框,把右侧滚动条慢慢地往下拉. 找到“其他/将文件上载到服务器包含本地目录路径”点击下面的“启用”功能
- 如何扩展ArcGIS中的元数据编辑器
http://www.esrichina-bj.cn/old../library/arcnews16/Metadata.htm http://www.esrichina-bj.cn/old../lib ...
- 配置activeMQ
一.加入以下的库 并配置好路径 ws2_32.lib;Mswsock.lib;cppunit.lib;libapr-1.lib;libapriconv-1.lib;libaprutil-1.lib;l ...
- 【翻译自mos文章】oracle db 中的用户账户被锁--查看oracle用户的尝试次数
參考原文: Users Accounts Getting Locked. (Doc ID 791037.1) 事实上这个文章是为oracle 别的软件产品写的,只是涉及到user 锁定问题.那还是跟d ...
- CRF图像切割简单介绍
这里主要是讲Conditional Random Fields(CRF)用于pixel-wise的图像标记(事实上就是图像切割).CRF经经常使用于 pixel-wise的label 预測.当把像素的 ...
- return value, output parameter,
Return Value https://docs.microsoft.com/en-us/sql/t-sql/language-elements/return-transact-sql?view=s ...
- 7-39 Math对象
7-39 Math对象 学习要点 掌握常用的数学计算方法 温馨提示:关于学习方法的建议 不要强求自己讲参考手册上所以的属性和方法都搞清楚,原因如下: 有些属性和方法非常生僻,很少用,甚至经过一段时间后 ...
- JFreeChart生成饼形图(3) (转自 JSP开发技术大全)
JFreeChart生成饼形图(3) (转自 JSP开发技术大全) 14.3 利用JFreeChart生成饼形图 通过JFreeChart插件,即可以生成普通效果的饼形图,也可以生成3D效果的饼形图: ...
- codeforces 689B B. Mike and Shortcuts(bfs)
题目链接: B. Mike and Shortcuts time limit per test 3 seconds memory limit per test 256 megabytes input ...
- 函数,#include <>和#include " "区别
l 4..函数定义到使用分三步:1.声明.2.定义函数.3.调用函数. 2.函数的定义格式:返回值 函数名(形参列表){ 函数体; return } 命名规则:1.只能由字母.数字.下划线或者美元符号 ...