[Usaco2011 Feb]Generic Cow Protests
Description
Farmer John's N (1 <= N <= 100,000) cows are lined up in a row and
numbered 1..N. The cows are conducting another one of their strange
protests, so each cow i is holding up a sign with an integer A_i
(-10,000 <= A_i <= 10,000).
FJ knows the mob of cows will behave if they are properly grouped
and thus would like to arrange the cows into one or more contiguous
groups so that every cow is in exactly one group and that every
group has a nonnegative sum.
Help him count the number of ways he can do this, modulo 1,000,000,009.
By way of example, if N = 4 and the cows' signs are 2, 3, -3, and
1, then the following are the only four valid ways of arranging the
cows:
(2 3 -3 1)
(2 3 -3) (1)
(2) (3 -3 1)
(2) (3 -3) (1)
Note that this example demonstrates the rule for counting different
orders of the arrangements.
给出n个数,问有几种划分方案(不能改变数的位置),使得每组中数的和大于等于0。输出方案数除以 1000000009的余数。
Input
- Line 1: A single integer: N
- Lines 2..N + 1: Line i + 1 contains a single integer: A_i
Output
- Line 1: A single integer, the number of arrangements modulo
1,000,000,009.
Sample Input
4
2
3
-3
1
Sample Output
4
本题很容易想到一个N^2 DP,即 $$ f(i)=\sum_{j=1}^{i-1} f(j),(sum[i]-sum[j]>=0)$$ 不过肯定会T就是了。我们考虑每次转移只考虑到sum[i]与sum[j]的大小关系,于是我们只要将前缀和离散化一下然后丢到树状数组里处理下就好了
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define lowbit(x) ((x)&(-x))
#define inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline int read(){
int x=0,f=1;char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+ch-'0';
return x*f;
}
inline void print(int x){
if (x>=10) print(x/10);
putchar(x%10+'0');
}
const int N=1e5,mod=1e9+9;
int tree[N+10],sum[N+10],f[N+10];
int n,T,ans;
struct AC{
int x,ID;
void join(int a,int b){x=a,ID=b;}
bool operator <(const AC &a)const{return x!=a.x?x<a.x:ID<a.ID;}
}A[N+10];
void insert(int x,int v){for (;x<=n;x+=lowbit(x)) tree[x]=(tree[x]+v)%mod;}
int query(int x){
int res=0;
for (;x;x-=lowbit(x)) res=(res+tree[x])%mod;
return res;
}
int main(){
n=read();
for (int i=1;i<=n;i++) A[i].join(A[i-1].x+read(),i),f[i]=(A[i].x>=0);
sort(A+1,A+1+n);
for (int i=1;i<=n;i++) sum[A[i].ID]=i;
for (int i=1;i<=n;i++) insert(sum[i],f[i]=(f[i]+query(sum[i]))%mod);
printf("%d\n",f[n]);
return 0;
}
[Usaco2011 Feb]Generic Cow Protests的更多相关文章
- BZOJ2274: [Usaco2011 Feb]Generic Cow Protests
2274: [Usaco2011 Feb]Generic Cow Protests Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 196 Solve ...
- 【bzoj2274】[Usaco2011 Feb]Generic Cow Protests dp+树状数组
题目描述 Farmer John's N (1 <= N <= 100,000) cows are lined up in a row andnumbered 1..N. The cows ...
- BZOJ 2274 [Usaco2011 Feb]Generic Cow Protests
[题解] 很容易可以写出朴素DP方程f[i]=sigma f[j] (sum[i]>=sum[j],1<=j<=i). 于是我们用权值树状数组优化即可. #include<c ...
- USACO 奶牛抗议 Generic Cow Protests
USACO 奶牛抗议 Generic Cow Protests Description 约翰家的N头奶牛聚集在一起,排成一列,正在进行一项抗议活动.第i头奶牛的理智度 为Ai,Ai可能是负数.约翰希望 ...
- 【BZOJ】【3301】【USACO2011 Feb】Cow Line
康托展开 裸的康托展开&逆康托展开 康托展开就是一种特殊的hash,且是可逆的…… 康托展开计算的是有多少种排列的字典序比这个小,所以编号应该+1:逆运算同理(-1). 序列->序号:( ...
- 洛谷 2344 奶牛抗议 Generic Cow Protests, 2011 Feb
[题解] 我们可以轻松想到朴素的状态转移方程,但直接这样做是n^2的.所以我们考虑采用树状数组优化.写法跟求逆序对很相似,即对前缀和离散化之后开一个权值树状数组,每次f[i]+=query(sum[i ...
- [USACO11FEB]Generic Cow Protests
思路: 动态规划.首先处理出这些数的前缀和$a$,$f_i$记录从第$1$位到第$i$位的最大分组数量.DP方程为:$f_i=max(f_i,f_j+1)$,其中$j$满足$a_i-a_j≥0$. # ...
- BZOJ3301: [USACO2011 Feb] Cow Line
3301: [USACO2011 Feb] Cow Line Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 67 Solved: 39[Submit ...
- 3301: [USACO2011 Feb] Cow Line
3301: [USACO2011 Feb] Cow Line Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 82 Solved: 49[Submit ...
随机推荐
- Centos 6.x 安装Nagios及WEB管理nagiosql实现windows及linux监控指南
一.Nagios简介 Nagios是一款开源的电脑系统和网络监视工具,能有效监控Windows.Linux和Unix的主机状态,交换机路由器等网络设置,打印机等.在系统或服务状态异常时发出邮件或短信报 ...
- 判断所ping主机的操作系统
根据它的值判断所ping主机的操作系统类型. TTL被称为生存期,也就是你所传输的数据在网络上经过的路由器的最大个数. 操作系统 TTLLINUX 64WIN2K/NT 128WINDOWS 系列 3 ...
- C#如何引用定义好的dll文件
1 添加引用,找到dll文件 2 引用类的名称空间,生成类的实例,调用类的方法,测试OK.
- Win7 Windows Update更新的文件默认在哪个位置
C:\Windows\SoftwareDistribution\download
- MySQL 当记录不存在时插入,当记录存在时更新
第一种: 示例一:插入多条记录 假设有一个主键为 client_id 的 clients 表,可以使用下面的语句: INSERT INTO clients (client_id,client_name ...
- Jenkins系列之-—03 修改Jenkins用户的密码
一.Jenkins修改用户密码 Jenkins用户的数据存放在JENKINS_HOME/users目录. 1. 打开忘记密码的用户文件夹,里面就一个文件config.xml.打开并找到<pass ...
- SpringMVC+MyBatis+JMS+JTA(分布式事务)
SpringMVC+MyBatis 相信已经是如今企业开发中经常使用技术了. 由于一些需求,我们须要集成JMS(我使用的是ActiveMQ).大家应该都知道.MQ也能够觉得是一个数据源.数据也是数据源 ...
- 关于Android中物理按键不响应的可能的一个问题。
今天在工作中犯了一个错误,写的视频播放器突然物理音量键就不起作用了. 一開始以为是自己定义的音量条把系统的物理音量条按键给屏蔽掉了. 删除自己定义的音量条还是不行,又怀疑是是加入了什么权限之类的.重复 ...
- python3 base64模块代码分析
#! /usr/bin/env python3 """Base16, Base32, Base64 (RFC 3548), Base85 and Ascii85 data ...
- 一张图理清js原型链(通过内置对象的引用关系)
很多同学估计写了几年js也没有搞清内置对象之间的原型链关系,鄙人抽空手绘了一张简图,以作参考: 简单说明一下,上图中annonymous()函数相当于是所有函数的根(它本身也是函数),他上面提供了一些 ...