题意:

思路:From http://blog.sina.com.cn/s/blog_8d5d2f04010196bh.html

首先我可以看出:
(1)我们找到的串的本身也是一个回文串(显然)
(2)这个回文串的长度一定是偶数(显然)
(3)左右两个串一定也是偶数长度的回文串(显然)
 
那么我们先用manacher处理出以每个字符为中心的回文串长度
由于我们所需处理的这些串的长度都为偶数,所以这些串的中心都在manacher时的那些填充字符上(显然)
 
那么我们就先枚举大串的中心i,设左边小串的中心为j
那么j+rad[j]>=i   (rad[]为manacher中处理出的数组)
由于左边一定是回文串,那么rad[j]就应该要覆盖到i(不然怎么保证左边是回文串),而如果左边得到保证,那么右边也一定符合条件(对称)
所以我们就只需求出满足条件的最左侧的j
 
然后我们对j也有一个枚举范围,那就是在i的回文串范围内,并且还在i-rad[i]/2 ~ i 之间,不然不够
 
这样我们就可以初步得出一个枚举算法,那就是对于每个i,在一定范围内枚举j,找最优解
据说这个算法是可过的,但是复杂度。。。。似乎不是太乐观
 
于是需要优化
该优化其实也是显然的
 
如果我们曾枚举过一个j,它不能覆盖到当前枚举的i(也就是j+rad[j]
那么这个j,用一定不能覆盖到i+1(显然)
也就是说这个j在之后的计算中都没有用了,我们就不需要枚举了
 
这样我们就可以在枚举j的时候一段一段的跳,以降低复杂度
而实现这个过程,我们可以用并查集
每次都将没用的j的父亲指向j+1,然后跳到getfather(j+1)
这样就轻松完成了分段跳这个优化
 
最后在分析一下复杂度
(1)manacher  O(n)
(2)并查集    O(nα(n))
(3)每个点最多被删n次 O(n)
(4)每个点最多被利用一次 O(n)
(5)每个点最多被枚举一次 O(n)
这个复杂度真的是怎么算怎么舒心,而且代码很好实现
 var f,p:array[..]of longint;
a:array[..]of char;
len,i,n,mx,id,ans,j:longint;
ch:ansistring; function min(x,y:longint):longint;
begin
if x<y then exit(x);
exit(y);
end; function max(x,y:longint):longint;
begin
if x>y then exit(x);
exit(y);
end; function find(k:longint):longint;
begin
if f[k]<>k then f[k]:=find(f[k]);
find:=f[k];
end; begin
assign(input,'bzoj2342.in'); reset(input);
assign(output,'bzoj2342.out'); rewrite(output);
readln(len);
readln(ch);
n:=; a[]:='@'; a[]:='#';
for i:= to len do
begin
inc(n); a[n]:=ch[i];
inc(n); a[n]:='#';
end;
inc(n); a[n]:='$';
mx:=; id:=;
for i:= to n- do
begin
if mx>i then p[i]:=min(p[id*-i],mx-i)
else p[i]:=;
while a[i-p[i]]=a[i+p[i]] do inc(p[i]);
if p[i]+i>mx then
begin
mx:=p[i]+i;
id:=i;
end;
end;
for i:= to n- do
if a[i]='#' then f[i]:=i
else f[i]:=i+;
i:=; j:=;
repeat
i:=i+;
if i>n then break;
j:=find(max(i-p[i] div ,));
while (j<i)and(j+p[j]<i) do
begin
f[j]:=find(j+);
j:=f[j];
end;
if j<i then ans:=max(ans,(i-j)*);
until i>n;
writeln(ans);
close(input);
close(output);
end.

【BZOJ2342】双倍回文(manacher,并查集)的更多相关文章

  1. 【BZOJ-2342】双倍回文 Manacher + 并查集

    2342: [Shoi2011]双倍回文 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1799  Solved: 671[Submit][Statu ...

  2. 【做题】BZOJ2342 双倍回文——马拉车&并查集

    题意:有一个长度为\(n\)的字符串,求它最长的子串\(s\)满足\(s\)是长度为4的倍数的回文串,且它的前半部分和后半部分都是回文串. \(n \leq 5 \times 10^5\) 首先,显然 ...

  3. BZOJ2342:[SHOI2011]双倍回文(Manacher)

    Description   Input 输入分为两行,第一行为一个整数,表示字符串的长度,第二行有个连续的小写的英文字符,表示字符串的内容. Output 输出文件只有一行,即:输入数据中字符串的最长 ...

  4. [SHOI2011]双倍回文 manacher

    题面: 洛谷:[SHOI2011]双倍回文‘ 题解: 首先有一个性质,本质不同的回文串最多O(n)个. 所以我们可以对于每个i,求出以这个i为结尾的最长回文串,然后以此作为长串,并判断把这个长串从中间 ...

  5. bzoj 2342: [Shoi2011]双倍回文 -- manacher

    2342: [Shoi2011]双倍回文 Time Limit: 10 Sec  Memory Limit: 128 MB Description Input 输入分为两行,第一行为一个整数,表示字符 ...

  6. [BZOJ2341][Shoi2011]双倍回文 manacher+std::set

    题目链接 发现双倍回文串一定是中心是#的回文串. 所以考虑枚举#点.发现以\(i\)为中心的双倍回文的左半部分是个回文串,其中心一定位于\(i-\frac{pal[i]-1}2\)到\(i-1\)之间 ...

  7. BZOJ 2342: [Shoi2011]双倍回文 [Manacher + set]

    题意: 求最长子串使得它有四个相同的回文串SSSS相连组成 枚举中间x 找右边的中间y满足 y-r[y]<=x y<=x+r[x]/2 用个set维护 注意中间只能是# #include ...

  8. [BZOJ2342]双倍回文

    对每个大中心暴力找小中心即可. 代码: #include<iostream> #include<cstdio> #include<cstring> #define ...

  9. BZOJ 2342 [Shoi2011]双倍回文(manacher+并查集)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2342 [题目大意] 记Wr为W串的倒置,求最长的形如WWrWWr的串的长度. [题解] ...

  10. BZOJ 2342: [Shoi2011]双倍回文 马拉车算法/并查集

    2342: [Shoi2011]双倍回文 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1123  Solved: 408 题目连接 http://w ...

随机推荐

  1. deepin 安装 idea

    1.su root 2.sudo apt install idea 3.sudo vi /etc/hosts 最后一行添加 0.0.0.0 account.jetbrains.com 4.注册码 N7 ...

  2. 用Google Cloud Platform搭建***服务教程

    之前FQ一直用的是***,天有不测风云,前几天发现ss服务挂了.更可怕的是ping都ping不通,多方打听,***中文社区已经炸开锅了,原因就是IP被封了.需要付费更换IP.然后到现在还是没有给我更换 ...

  3. ACM_01背包2

    背包4 Time Limit: 2000/1000ms (Java/Others) Problem Description: 有n个重量和价值分别为Wi,Vi的物品,现从这些物品中挑选出总量不超过W的 ...

  4. [转]ASP.NET MVC的帮助类HtmlHelper和UrlHelper

    本文转自:http://www.cnblogs.com/greatandforever/archive/2010/04/20/1715914.html?login=1 在ASP.NET MVC框架中没 ...

  5. 观察者模式(observer)c++实现

    1意图 定义对象间的一种一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都得到通知并被自动更新. 2别名 依赖(Dependents), 发布-订阅(Publish-Subscribe ...

  6. CF540C Ice Cave

    思路: 搜索. 加回溯会超时,不加回溯就过了,不是很理解. 实现: #include <iostream> #include <cstdio> using namespace ...

  7. 安卓TV盒子常见问题以及解决方法

    1.为什么requestfocus无效 原因:requestfocus不支持在Touch模式下的Focus; 解法方案:再加一个requestFocusFromTouch函数. 2.摄像头打开问题,调 ...

  8. js正则表达式限制文本框只能输入数字,小数点,英文字母

    1.文本框只能输入数字代码(小数点也不能输入)<input onkeyup="this.value=this.value.replace(/\D/g,'')" onafter ...

  9. MySQL的基本概念与操作

    数据库的基本概念什么是数据库?用于存储和管理数据的仓库.数据库的特点:持久化存储数据的.其实数据库就是一个文件系统方便存储和管理数据使用了统一的方式操作数据库 – SQL数据库的分类:数据库根据存储采 ...

  10. WebService接口数据传输加密

    1.加密流程 客服端--->加密文本------>服务端接收到加密文本,通过固定加密密文进行解密,然后做相应处理------------>返回结果 2.固定密文创建 密文创建有很多种 ...