参考文献:见《High Efficiency Video Coding (HEVC)》Block Structures and Parallelism Features in HEVC章节
《HEVC标准介绍、HEVC帧间预测论文笔记》系列博客,目录见:http://www.cnblogs.com/DwyaneTalk/p/5711333.html
CTU:coding tree unit,编码树单元,LCU
对于YUV=420格式的彩色视频:一个CTU由一个CTB of the luma samples 、2个CTBs of the choma samples和相关的语法元素组成。Luma CTB是一个2^N x 2^N的像素区域,而相应的Choma CTB是2^(N-1) x 2^(N-1)的像素区域,N的值在编码器中确定,并在SPS(sequence parameter set)中传输。N可选4,5,6,表示CTU的大小可取16、32、64。
CTU相当于H.264中的MarcoBlock划分图片的概念,是在编码过程中的独立编码单位,然后可以递归划分成CU。
CU:coding unit,编码单元
每一个CTU,可以进一步均匀划分成4个square CUs,一个CU又可以递归按四叉树结构划分成4个小的CUs。对于YUV=420的彩色视频:一个CU由一个CB of the luma samples、2个CBs of the choma samples和相关的语法元素。一个Luma CB是2^N x 2^N(此处的N与CTU中的N大小不同)的像素区域,而相应的choma CB是2^(N-1) x 2^(N-1)的像素区域,N的值同样在编码器中确定,并在SPS中传输。
编码时,在CTU level,通过传输split_cu_flags标志指明CTU是否进一步划分成四个CU。类似地,对于一个CU,也通过一个split_cu_flags标志指明是否进一步划分成子CU。CU通过split_cu_flags标志指示进行递归的划分,直到split_cu_flags==0或者达到最小的CU尺寸(mininum CU size),对于达到最小尺寸的CU,不需要传输split_cu_flags标志,CU的最小尺寸参数(通过CTU深度确定)在编码器中确定,并在SPS中进行传输。
所以CU的大小范围是:minunum size CU ~CTU,一般情况设置CTU为64,最小CU为8(通过CTU深度确定),所以此时CU大小可取8、16、32、64。一个CTU进行编码时,是按照深度优先的顺序进行CU编码,类似于z-scan,如下图:右边表示CTU的递归四叉树划分,左边表示CTU中CU的编码顺序。
视频序列的分辨率(长和宽参数)也会在SPS中传输,要求长宽必须是mininum CU size的整数倍,但是可以不是 CTU size的整数倍。对于长宽不是CTU size整数倍的情况,图像边界处的CTU被认为已经分割成和图像边界重合(the CTUs at the borders are inferred to be split until the boundaries of the resulting blocks coincide with the picture boundary),对于这种边界处默认的分割,不需要传输split_cu_flags标志。
CU块是进行决策帧间、帧内、Skip/Merge模式的基本单元。
PU:prediction unit,预测单元
在CU level决定prediction mode,并将一个CU的prediction mode传输在bitstream中。而PU是是进行预测的基本单元,有一个PB of the luma、2个PB of the choma和相应的语法元素组成。
如果一个CU的prediction mode是intra prediction(帧内预测):
对于luma CU:有35个可选的帧内预测方向(Plannar(0)、DC(1)和方向预测(2~34)),对于mininum size的luma CB,可以平均划分成4个方形的subblocks,对于每个subblock进行独立的帧内预测,有独立的intra prediction mode。也就是说对于帧内预测的CU,可以进行2Nx2N和NxN两种PU划分模式,且NxN模式只有对mininum size CB可以使用。
一个帧内luma PU块,预测模式确定之后,需要对预测模式进行编码。HEVC中在进行帧内预测模式编码时,先为每个intra PU确定3个最可能模式(确定策略后面介绍),假设为S={M1,M2,M3}。然后通过判断luma PU的帧内预测模式是否在S中,如果在S中,则需要2bit编码预测模式在S中的索引,否则需要5bit编码预测模式在另外32种模式中的索引。
对于luma PU,确定最可能3个预测模式是根据当前PU左边和上边的预测模式,假设左边和上边的预测模式分别是A和B,如果左边或上边PU不是帧内预测模式或是PCM模式,则A或B为DC;另外,如果上边PU块不在当前CTU内,那么B也为DC。确定好A和B之后:
当A=B时,如果A,B都大于2,即A和B都不是Planar或DC,那么:
M1=A;
M2=2+((A-2-1+32)%32)
M3=2+((A-2+1)%32)
当A=B时,如果A,B至少有一个小于2,即A或B是Planar或DC,那么:
M1=Planar,M2=DC,M3=26(竖直方向预测)
当A!=B时,M1=A,M2=B,对于M3按照下面规则决定:
如果A和B都不是Planar,那么M3=Planar;
如果A和B都不是DC,那么M3=DC;
否则,说明{A,B}={Planar,DC},那么M3=26。
对于choma luma:有5个可选的帧内预测方向(Planar/0、DC/1、Vertical/26、Horizontal/10和luma PU的预测方向)。对于预测模式的编码,通过0表示luma PU的预测方向,100、111、101和110分别表示Planar/0、DC/1、Vertical/26和Horizontal/10。
另外,在进行帧内预测时,如果CU是mininum size CU,且将CU划分成4个PU时,那么要保证TU小于等于PU,如下图:表示一个8x8的CU块分成4个PU,那么必须分成四个4x4的TU块,至于每个TU是否进一步划分成更小的TU不作限定,只根据正常TU划分的条件判断。这是为了提高intra预测的精确度。图a表示如果CU不化成4个TU,那么intra预测的距离就会较远。图b则表示了将CU划分成4个TU,这时候预测右边的小PU时,左边的PU已经预测完成,并进行了变换和重建,可以保证预测距离更近。
如果一个CU的prediction mode是inter prediction(帧间预测):
对于inter PU,luma PB和choma PBs拥有相同的PU划分模式和motion parameters(包括运动估计方向数目(1/2),参考帧索引,和对每个运动估计方向的运动矢量MV)。HEVC中有8中PU划分模式(2Nx2N、NxN、2个SMP和4个AMP),如下图所示:
对于NxN模式,只有mininum size CU可以使用,且8x8CU不能使用。
对于AMP模式,只有32x32和16x16的CU可以使用,8x8和64x64的CU不能使用,所以inter PU的最小尺寸为8x4和4x8,这是因为TU最小尺寸为4x4,进行变换的最小单元也是4x4。另外,HEVC可以在SPS中通过一个syntax禁用AMP。
从H.262到HEVC过程中,PU的可选大小变化如下图:
如果一个CU的prediction mode是Skip:
那么PU的划分模式只能是2N x 2N。
PS:对于4x8和8x4,HEVC规定只能用单向预测,不能用双向预测。
在HM1中,实际可以通过inter_4x4_enabled_flag(在SPS中)指示是否使用4x4的PU。
TU:transform unit,变换单元
对于是进行变量的单元,一个CU可以递归按照四叉树结构划分成TUs,CU作为四叉树的root,如下图表示一个CU划分成TUs的结构:
CU划分成TUs中,TU的大小范围取决于max TU size、min TU size和max TU depth三个参数决定,这三个参数在SPS level进行传输。max TU size为5表示最大TU是32x32,min TU size为2表示最小TU是4x4。max depth为3表示CU划分成TU最多划分成3层(如上图10、11、12、13就在第3层)。对于intra predition,要确保PU大于等于TU(即TU不跨多个intra PU),而inter predition没有相应的限制。
另外,对于一个CU,最多有一个trasform tree syntax,所以一个CU的luma CB 和choma CBs拥有相同的TU划分。但是除了对于8x8的luma CB划分成4x4的TB时,4x4的choma CBs不会划分成2x2的TB。
- HEVC简介】CTU、CU、PU、TU结构
https://www.cnblogs.com/DwyaneTalk/p/5711342.html
- HEVC学习之二CTU, CU, CTB, CB, PB, TB
在H264标准中,编码层的核心是宏块,一个宏块大小为16X16,包含一个16X16的亮度块,以及对于常用的4:2:0采样格式来说还包含两个8X8的色度块.相对应的在HEVC中类似的结构为编码树单元(C ...
- 【HEVC简介】SAO-Sample Adaptive Offset, 样本自适应偏移量
paper: Sample Adaptive Offset for HEVC <HEVC标准介绍.HEVC帧间预测论文笔记>系列博客,目录见:http://www.cnblogs.com/ ...
- 【HEVC简介】DB-DeBlock Filter
参考论文:HEVC Deblocking Filter <HEVC标准介绍.HEVC帧间预测论文笔记>系列博客,目录见:http://www.cnblogs.com/DwyaneTalk/ ...
- 【HEVC简介】Inter Prediction Tools
参考文献:见<High Efficiency Video Coding (HEVC)>Inter-Picture Prediction in HEVC章节 <HEVC标准介绍.HEV ...
- HM中CU,TU的划分
相信只要是做算法改进的,首先都会遇到这么一个问题:CU,PU及TU这几个在HM中该如何打印出它们最终的划分情况呢?也经常有人来问我这个问题,一般来说,因为问我的时候我一般手头都没有现成的代码可以提供, ...
- Servlet学习笔记【1】--- 背景和基础知识(CGI、Web服务器发展史、Servlet简介、任务、继承结构)
本文主要讲Servlet的基础知识和背景知识. 1 CGI简介 CGI(Common Gateway Interface 公共网关接口)是WWW技术中最重要的技术之一,有着不可替代的重要地位.CGI是 ...
- 【HEVC简介】High Level Syntax
参考文献:见<High Efficiency Video Coding (HEVC)>High Level Syntax章节 <HEVC标准介绍.HEVC帧间预测论文笔记>系列 ...
- JavaWeb学习----JSP简介及入门(JSP结构及JSP处理)
[声明] 欢迎转载,但请保留文章原始出处→_→ 艾水及水:http://www.cnblogs.com/liuhepeng 文章来源:http://www.cnblogs.com/liuhepeng ...
随机推荐
- Android 查询 添加 修改 删除通讯录联系人示例
1.AndroidManifest.xml中添加权限 <uses-permission android:name="android.permission.READ_CONTACTS&q ...
- Swagger测试工具
http://www.360doc.com/content/16/0509/08/1355383_557462195.shtml
- poj-1273 Drainage Ditches(最大流基础题)
题目链接: Drainage Ditches Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 67475 Accepted ...
- I.MX6 按键开关机 PMIC 检测
/************************************************************************* * I.MX6 按键开关机 PMIC 检测 * 说 ...
- assign.py
#链式赋值 m=n=[1,2,3] m[0]=2 print(m,n) #m,n都改变了 x=y='xxx' y='yyy' print(x,y) #只有y 改变 #序列解包 x,y,z=1,2,3 ...
- YUIDoc的使用方法小结
一.YUIDoc概述以及安装YUIDoc是为YUI Library用来生成HTML版API文档的一系列工具集,文档的生成完全基于JavaDoc风格的代码注释规则.该工具是基于Python语言编写,并且 ...
- 各个版本Microsoft Visual C++运行库下载
#Microsoft Visual C++ 2005 Microsoft Visual C++ 2005 Redistributable Package (x86) https://www.micro ...
- django上课笔记2-视图CBV-ORM补充-Django的自带分页-Django的自定义分页
一.视图CBV 1.urls url(r'^login.html$', views.Login.as_view()), 2.views from django.views import View cl ...
- 洛谷 - P1141 - 01迷宫 - dfs
https://www.luogu.org/problemnew/show/P1141 能互相到达的格子的答案自然是一样的,第一次dfs标记联通块,第二次dfs把cnt传递到整个联通卡并顺手消除vis ...
- hdu 1171 Big Event in HDU【生成函数】
按套路列生成函数式子然后暴力乘,这样复杂度看起来非常大,但是可以动态维护最大值,这样就是O(能过)的了 仔细想想这个多项式暴力乘理解成背包dp也行? #include<iostream> ...