BZOJ_3049_[Usaco2013 Jan]Island Travels _状压DP+BFS

Description

Farmer John has taken the cows to a vacation out on the ocean! The cows are living on N (1 <= N <= 15) islands, which are located on an R x C grid (1 <= R, C <= 50). An island is a maximal connected group of squares on the grid that are marked as 'X', where two 'X's are connected if they share a side. (Thus, two 'X's sharing a corner are not necessarily connected.) Bessie, however, is arriving late, so she is coming in with FJ by helicopter. Thus, she can first land on any of the islands she chooses. She wants to visit all the cows at least once, so she will travel between islands until she has visited all N of the islands at least once. FJ's helicopter doesn't have much fuel left, so he doesn't want to use it until the cows decide to go home. Fortunately, some of the squares in the grid are shallow water, which is denoted by 'S'. Bessie can swim through these squares in the four cardinal directions (north, east, south, west) in order to travel between the islands. She can also travel (in the four cardinal directions) between an island and shallow water, and vice versa. Find the minimum distance Bessie will have to swim in order to visit all of the islands. (The distance Bessie will have to swim is the number of distinct times she is on a square marked 'S'.) After looking at a map of the area, Bessie knows this will be possible.

  给你一张r*c的地图,有’S’,’X’,’.’三种地形,所有判定相邻与行走都是四连通的。我们设’X’为陆地,一个’X’连通块为一个岛屿,’S’为浅水,’.’为深水。刚开始你可以降落在任一一块陆地上,在陆地上可以行走,在浅水里可以游泳。并且陆地和浅水之间可以相互通行。但无论如何都不能走到深水。你现在要求通过行走和游泳使得你把所有的岛屿都经过一边。Q:你最少要经过几个浅水区?保证有解。
 

Input

* Line 1: Two space-separated integers: R and C.
* Lines 2..R+1: Line i+1 contains C characters giving row i of the grid.
Deep water squares are marked as '.', island squares are marked as 'X',
and shallow water squares are marked as 'S'.

Output

* Line 1: A single integer representing the minimum distance Bessie has to swim to visit all islands.

Sample Input

5 4
XX.S
.S..
SXSS
S.SX
..SX
INPUT DETAILS: There are three islands with shallow water paths connecting some of them.

Sample Output

3
OUTPUT DETAILS: Bessie can travel from the island in the top left to the one in the middle, swimming 1 unit,
and then travel from the middle island to the one in the bottom right, swimming 2 units, for a total of 3 units.

HINT

样例解释:
 5*4的地图,先走到左上角的岛屿,再向下经过1个’S’区到达中间的岛屿,再向右经过2个’S’区到达右下角的岛屿。(最优路径不一定只有一条)

设f[i][j]表示连通状态为i当前在j这个岛屿的最小花费。
BFS处理出两个岛屿之间有多少个浅水区。
状压DP即可。
 
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define inf 0x3f3f3f3f
#define _min(x,y) ((x)<(y)?(x):(y))
int tx[]={1,0,0,-1};
int ty[]={0,1,-1,0};
int map[55][55],dis[17][17],f[1<<15][17],idx[55][55],vis[55][55],dep[55][55],tot,Q[5050],cnt,n,m,l,r,p1,mp[1<<15];
char ch[55];
void bfs(int sx,int sy) {
int i; tot++; cnt++;
l=r=0;
Q[r++]=sx; Q[r++]=sy; idx[sx][sy]=cnt;
while(l<r) {
int x=Q[l++],y=Q[l++]; vis[x][y]=tot;
for(i=0;i<4;i++) {
int dx=x+tx[i],dy=y+ty[i];
if(dx<1||dx>n||dy<1||dy>m) continue;
if(map[dx][dy]==0&&vis[dx][dy]!=tot) {
vis[dx][dy]=tot; idx[dx][dy]=cnt;
Q[r++]=dx; Q[r++]=dy;
}
}
}
}
void dfs(int x,int y,int d) {
int i;Q[r++]=x; Q[r++]=y; dep[x][y]=d;
int tmp=idx[x][y];
dis[p1][tmp]=_min(dis[p1][tmp],d);
for(i=0;i<4;i++) {
int dx=x+tx[i],dy=y+ty[i];
if(dx>=1&&dx<=n&&dy>=1&&dy<=m) {
if(map[dx][dy]==0&&vis[dx][dy]!=tot) {
vis[dx][dy]=tot;
dfs(dx,dy,d);
}
}
}
}
void get_dis() {
p1++;
int i,j; tot++; dis[p1][p1]=0;l=r=0;
for(i=1;i<=n;i++) for(j=1;j<=m;j++) if(idx[i][j]==p1) Q[r++]=i,Q[r++]=j,vis[i][j]=tot,dep[i][j]=0;
while(l<r) {
int x=Q[l++],y=Q[l++];
for(i=0;i<4;i++) {
int dx=x+tx[i],dy=y+ty[i];
if(dx<1||dx>n||dy<1||dy>m) continue;
if(map[dx][dy]==1&&vis[dx][dy]!=tot) {
vis[dx][dy]=tot;
dfs(dx,dy,dep[x][y]+1);
}
}
}
}
int main() {
scanf("%d%d",&n,&m);
int i,j,k,o,q;
for(i=1;i<=n;i++) {
scanf("%s",ch+1);
for(j=1;j<=m;j++) {
if(ch[j]=='.') map[i][j]=2;
else if(ch[j]=='X') map[i][j]=0;
else map[i][j]=1;
}
}
for(i=1;i<=n;i++) {
for(j=1;j<=m;j++) {
if(!vis[i][j]&&map[i][j]==0) bfs(i,j);
}
}
memset(f,0x3f,sizeof(f));
for(i=1;i<=cnt;i++) f[1<<(i-1)][i]=0,mp[1<<(i-1)]=i;
memset(dis,0x3f,sizeof(dis));
for(i=1;i<=cnt;i++) get_dis();
int mask=(1<<cnt)-1;
for(i=1;i<mask;i++) {
for(o=i;o;o-=o&(-o)) {
j=mp[o&(-o)];
for(q=mask-i;q;q-=q&(-q)) {
k=mp[q&(-q)];
f[i|(1<<(k-1))][k]=_min(f[i|(1<<(k-1))][k],f[i][j]+dis[j][k]);
}
}
}
int ans=1<<30;
for(i=1;i<=cnt;i++) ans=_min(ans,f[mask][i]);
printf("%d\n",ans);
}

BZOJ_3049_[Usaco2013 Jan]Island Travels _状压DP+BFS的更多相关文章

  1. BZOJ_1076_[SCOI2008]奖励关_状压DP

    BZOJ_1076_[SCOI2008]奖励关_状压DP 题意: 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛 ...

  2. BZOJ_2064_分裂_状压DP

    BZOJ_2064_分裂_状压DP Description 背景: 和久必分,分久必和... 题目描述: 中国历史上上分分和和次数非常多..通读中国历史的WJMZBMR表示毫无压力. 同时经常搞OI的 ...

  3. BZOJ_5369_[Pkusc2018]最大前缀和_状压DP

    BZOJ_5369_[Pkusc2018]最大前缀和_状压DP Description 小C是一个算法竞赛爱好者,有一天小C遇到了一个非常难的问题:求一个序列的最大子段和. 但是小C并不会做这个题,于 ...

  4. hdu 3247 AC自动+状压dp+bfs处理

    Resource Archiver Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 100000/100000 K (Java/Ot ...

  5. 【BZOJ2595_洛谷4294】[WC2008]游览计划(斯坦纳树_状压DP)

    上个月写的题qwq--突然想写篇博客 题目: 洛谷4294 分析: 斯坦纳树模板题. 简单来说,斯坦纳树问题就是给定一张有边权(或点权)的无向图,要求选若干条边使图中一些选定的点连通(可以经过其他点) ...

  6. [poj1185]炮兵阵地_状压dp

    炮兵阵地 poj-1185 题目大意:给出n列m行,在其中添加炮兵,问最多能加的炮兵数. 注释:n<=100,m<=10.然后只能在平原的地方建立炮兵. 想法:第2到状压dp,++.这题显 ...

  7. [bzoj4006][JLOI2015]管道连接_斯坦纳树_状压dp

    管道连接 bzoj-4006 JLOI-2015 题目大意:给定一张$n$个节点$m$条边的带边权无向图.并且给定$p$个重要节点,每个重要节点都有一个颜色.求一个边权和最小的边集使得颜色相同的重要节 ...

  8. [bzoj1879][Sdoi2009]Bill的挑战_动态规划_状压dp

    Bill的挑战 bzoj-1879 Sdoi-2009 题目大意: 注释:$1\le t \le 5$,$1\le m \le 15$,$1\le length \le 50$. 想法: 又是一个看数 ...

  9. [bzoj3717][PA2014]Pakowanie_动态规划_状压dp

    Pakowanie bzoj-3717 PA-2014 题目大意:给你n个物品m个包,物品有体积包有容量,问装下这些物品最少用几个包. 注释:$1\le n\le 24$,$1\le m\le 100 ...

随机推荐

  1. npm 安装vue-cli

    TIP:win10下安装,使用管理员身份进行,否则会有权限限制. 1,安装完成node,node有自带的npm,可以直接在cmd中,找到nodeJs安装的路径下,进行命令行全局安装vue-cli.(n ...

  2. 抽球游戏(fwt)

    地址:https://nanti.jisuanke.com/t/26017 分析: 现在是给定p,求是否存在这样的数列c,我们可以让p进行fwt变换,然后把点值都三次方根,然后再把得到的点值ufwt成 ...

  3. XP操作系统设置:[82]关机快捷键

    磨镰刀不少割麦,掌握了快速关机的多种方法,在尴尬的时候说不定还真能派上用场呢.   工具/原料   手提电脑.台式电脑.Windows 操作系统. 方法一:   1 Windows XP 操作系统中有 ...

  4. 【Todo】Java类型转换总结

    参考 http://www.cnblogs.com/lwbqqyumidi/p/3700164.html 这篇文章也可以对照着看:http://www.360doc.com/content/10/09 ...

  5. Solidworks如何显示装饰螺纹线

    1 工具-选项   2 文档属性-上色的装饰螺纹线   3 这样我再插入装饰螺纹线的时候就有效果了

  6. MongoDB与MySQL的插入性能测试【转】

    1.1  MongoDB的简单介绍 在当今的数据库市场上,MySQL无疑是占有一席之地的.作为一个开源的关系型数据库,MySQL被大量应用在各大网站后台中,承担着信息存储的重要作用.2009年,甲骨文 ...

  7. mybatis 动态curd

    xml <select id="selectByCondition" parameterType="com.oracle.pojo.Student" re ...

  8. python基础小练习

    def main(): number = int(input("请输入学生的总人数:")) # 输入要录入的学生总数 count = number # 用一个变量来保存这个学生总数 ...

  9. iOS之UI--涂鸦画板实例

     iOS之UI--涂鸦画板实例  首先是搭建框架 其他的略过,直接展示效果: 然后接下来上传搭建好两个控制器框架的源码百度云下载链接: http://pan.baidu.com/s/1skjpDox  ...

  10. 使用脚本删除ios工程中未使用图片

    使用脚本删除ios工程中未使用图片 最近在读唐巧大神的<iOS开发进阶>,学到了一个大招:使用脚本删除ios中未使用的图片(纸书上有点小问题,参考github上的issue:使用脚本删除i ...