BZOJ2212【POI2011】ROT:Tree Rotation 线段树合并
题意:
给一棵n(1≤n≤200000个叶子的二叉树,可以交换每个点的左右子树,要求叶子遍历序的逆序对最少。
分析:
求逆序对我们可以想到权值线段树,所以我们对每个点建一颗线段树(为了避免空间爆炸,采取动态开点的科技)
两个子节点可以交换,于是我们可以递归,自底向上贪心解决问题,每次线段树合并,在合并时,统计交换左右子节点后,横跨当前位置的逆序对数量,以及不交换子节点的情况下的这个数量,将更优的计入答案。这道问题就圆满解决了。
代码:
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=;
struct node{ll v;int ls,rs;}t[N*];
int n,m,tot=,cnt=,nm[N],ls[N],rs[N],rt[N];
ll ans=,ans1,ans2;
void read(int x){
scanf("%d",&nm[x]);
if(!nm[x]) read(ls[x]=++cnt),
read(rs[x]=++cnt);return ;
} void update(int &x,int l,int r,int v){
if(!x) x=++tot;int mid=l+r>>;
if(l==r){t[x].v=;return ;}
if(v<=mid) update(t[x].ls,l,mid,v);
else update(t[x].rs,mid+,r,v);
t[x].v=t[t[x].rs].v+t[t[x].ls].v;
} int merge(int x,int y){
if(!x||!y) return x|y;
ans1+=(ll)t[t[x].rs].v*t[t[y].ls].v;
ans2+=(ll)t[t[x].ls].v*t[t[y].rs].v;
t[x].ls=merge(t[x].ls,t[y].ls);
t[x].rs=merge(t[x].rs,t[y].rs);
t[x].v=t[t[x].ls].v+t[t[x].rs].v;
return x;
} void dfs(int x){
if(!x) return ;
dfs(ls[x]);dfs(rs[x]);
if(!nm[x]){
ans1=ans2=;
rt[x]=merge(rt[ls[x]],rt[rs[x]]);
ans+=min(ans1,ans2);
} return ;
} int main(){
scanf("%d",&n);read();
for(int i=;i<=cnt;i++)
if(nm[i]) update(rt[i],,n,nm[i]);
dfs();printf("%lld\n",ans);
return ;
}
线段树合并
BZOJ2212【POI2011】ROT:Tree Rotation 线段树合并的更多相关文章
- BZOJ_2212_[Poi2011]Tree Rotations_线段树合并
BZOJ_2212_[Poi2011]Tree Rotations_线段树合并 Description Byteasar the gardener is growing a rare tree cal ...
- 【BZOJ2212】[Poi2011]Tree Rotations 线段树合并
[BZOJ2212][Poi2011]Tree Rotations Description Byteasar the gardener is growing a rare tree called Ro ...
- BZOJ2212 [Poi2011]Tree Rotations 线段树合并 逆序对
原文链接http://www.cnblogs.com/zhouzhendong/p/8079786.html 题目传送门 - BZOJ2212 题意概括 给一棵n(1≤n≤200000个叶子的二叉树, ...
- bzoj2212[Poi2011]Tree Rotations [线段树合并]
题面 bzoj ans = 两子树ans + min(左子在前逆序对数, 右子在前逆序对数) 线段树合并 #include <cstdio> #include <cstdlib> ...
- 洛谷P3521 [POI2011]ROT-Tree Rotation [线段树合并]
题目传送门 Tree Rotation 题目描述 Byteasar the gardener is growing a rare tree called Rotatus Informatikus. I ...
- BZOJ.2212.[POI2011]Tree Rotations(线段树合并)
题目链接 \(Description\) 给定一棵n个叶子的二叉树,每个叶节点有权值(1<=ai<=n).可以任意的交换两棵子树.问最后顺序遍历树得到的叶子权值序列中,最少的逆序对数是多少 ...
- [bzoj2212]Tree Rotations(线段树合并)
解题关键:线段树合并模板题.线段树合并的题目一般都是权值线段树,因为结构相同,求逆序对时,遍历权值线段树的过程就是遍历所有mid的过程,所有能求出所有逆序对. #include<iostream ...
- Bzoj P2212 [Poi2011]Tree Rotations | 线段树合并
题目链接 通过观察与思考,我们可以发现,交换一个结点的两棵子树,只对这两棵子树内的节点的逆序对个数有影响,对这两棵子树以外的节点是没有影响的.嗯,然后呢?(っ•̀ω•́)っ 然后,我们就可以对于每一个 ...
- bzoj2212/3702 [Poi2011]Tree Rotations 线段树合并
Description Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some in ...
随机推荐
- 在使用react时的异步问题解决
在时用react时, 常常会出现在创建一个对象后, 对象还没有创建完成就被使用的异步问题, 介于这种问题, 一种解决方法就是使用Promise, 将需要被等待的那一步放到Promise中, Promi ...
- ubuntu12.04向左边栏添加图标(引用)
转自:http://forum.ubuntu.com.cn/viewtopic.php?f=86&t=317442 打开想添加的软件,图标会出现在侧边栏,右击之,点Keep In Launch ...
- linux更改用户名,域名(转载)
转自:http://huangro.iteye.com/blog/365975 1. 我们在root权限下,使用命令: usermod -l new_user_name old_user_name 即 ...
- bzoj 1997: [Hnoi2010]Planar【瞎搞+黑白染色】
脑补一下给出的图:一个环,然后有若干连接环点的边,我们就是要求这些边不重叠 考虑一下不重叠的情况,两个有交边一定要一个在环内一个在环外,所以把相交的边连边,然后跑黑白染色看是否能不矛盾即可(可能算个2 ...
- Python网络爬虫与信息提取
1.Requests库入门 Requests安装 用管理员身份打开命令提示符: pip install requests 测试:打开IDLE: >>> import requests ...
- 上帝造题的七分钟2/花神游历各国/GSS4 线段树维护区间开方 By cellur925
题目传送门 或者 另一个传送门 询问区间和都好说.但是开方?? 其实是这样的,一个数(1e9)以内连续开方6次就会变成1,于是我们就可在开方操作上进行暴力修改.暴力修改的意思其实也就是找到叶子节点进行 ...
- c语言程序设计案例教程(第2版)笔记(三)—变量、结构体
零散知识点: 变量 :C语言中,每个变量必须先定义后引用.所谓变量存在是指系统为这个变量分配一块存储空间,此时对变量的操作,就是对变量所对应的存储空间中存放的数据进行操作.人们将变量占据 ...
- 转】用Mahout构建职位推荐引擎
原博文出自于: http://blog.fens.me/hadoop-mahout-recommend-job/ 感谢! 用Mahout构建职位推荐引擎 Hadoop家族系列文章,主要介绍Hadoop ...
- WPF学习11:基于MVVM Light 制作图形编辑工具(2)
本文是WPF学习10:基于MVVM Light 制作图形编辑工具(1)的后续 这一次的目标是完成 两个任务. 画布 效果: 画布上,选择的方案是:直接以Image作为画布,使用RenderTarget ...
- java课程设计全程实录——第3天
参考资料: 课设主要指导: http://www.cnblogs.com/zhrb/p/6872265.html 2019年5月10日 https://blog.csdn.net/weixin_421 ...