51nod 1222 莫比乌斯反演
思路:
yhx找的反演题
题解已经烂大街了
#pragma GCC optimize("O3")
//By SiriusRen
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int mu[],prime[],vis[],tot;
void init(){
mu[]=;
for(int i=;i<=;i++){
if(!vis[i])prime[++tot]=i,mu[i]=-;
for(int j=;j<=tot&&i*prime[j]<=;j++){
vis[i*prime[j]]=;mu[i*prime[j]]=-mu[i];
if(i%prime[j]==){mu[i*prime[j]]=;break;}
}
}
}
ll f(ll n){
ll res=;
for(ll i=;i*i*i<=n;res-=,i++)
for(ll j=i;i*j*j<=n;j++)
res+=(n/i/j-j+)*-(i==j?(n/i/j-j)*:);
return res;
}
ll solve(ll n){
ll res=;
for(ll i=;i*i<=n;i++)res+=mu[i]?mu[i]*f(n/i/i):;
return (res+n)/;
}
int main(){
init();ll a,b;
scanf("%lld%lld",&a,&b);
printf("%lld\n",solve(b)-solve(a-));
}
51nod 1222 莫比乌斯反演的更多相关文章
- 【51nod】1222 最小公倍数计数 莫比乌斯反演+组合计数
[题意]给定a和b,求满足a<=lcm(x,y)<=b && x<y的数对(x,y)个数.a,b<=10^11. [算法]莫比乌斯反演+组合计数 [题解]★具体 ...
- 【51NOD 1847】奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数)
[51NOD 1847]奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数) 题面 51NOD \[\sum_{i=1}^n\sum_{j=1}^nsgcd(i,j)^k\] 其中\( ...
- 51nod 1237 最大公约数之和 V3【欧拉函数||莫比乌斯反演+杜教筛】
用mu写lcm那道卡常卡成狗(然而最后也没卡过去,于是写一下gcd冷静一下 首先推一下式子 \[ \sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j) \] \[ \sum_{i= ...
- [51Nod 1237] 最大公约数之和 (杜教筛+莫比乌斯反演)
题目描述 求∑i=1n∑j=1n(i,j) mod (1e9+7)n<=1010\sum_{i=1}^n\sum_{j=1}^n(i,j)~mod~(1e9+7)\\n<=10^{10}i ...
- 51nod 1584 加权约数和 约数和函数小trick 莫比乌斯反演
LINK:加权约数和 我曾经一度认为莫比乌斯反演都是板子题. 做过这道题我认输了 不是什么东西都是板子. 一个trick 设\(s(x)\)为x的约数和函数. 有 \(s(i\cdot j)=\sum ...
- 51nod 1355 - 斐波那契的最小公倍数(Min-Max 容斥+莫比乌斯反演)
vjudge 题面传送门 首先我们知道斐波那契数列的 lcm 是不太容易计算的,但是它们的 gcd 非常容易计算--\(\gcd(f_x,f_y)=f_{\gcd(x,y)}\),该性质已在我的这篇博 ...
- 莫比乌斯反演/线性筛/积性函数/杜教筛/min25筛 学习笔记
最近重新系统地学了下这几个知识点,以前没发现他们的联系,这次总结一下. 莫比乌斯反演入门:https://blog.csdn.net/litble/article/details/72804050 线 ...
- hdu1695 GCD(莫比乌斯反演)
题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌 ...
- BZOJ 2154: Crash的数字表格 [莫比乌斯反演]
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2924 Solved: 1091[Submit][Status][ ...
随机推荐
- Journals in Fluid Mechanics
journal of fluid mechanics physics of fluids annual review of fluid mechanics
- * average vector from multiple files--Matlab
n=359;a=[];b=[];c=[];% for loopfor i=1:n filename=sprintf('output_%d.dat',i); fileinfo = imp ...
- TensorFlow — 相关 API
TensorFlow — 相关 API TensorFlow 相关函数理解 任务时间:时间未知 tf.truncated_normal truncated_normal( shape, mean=0. ...
- Apache Maven Cookbook(八)学习笔记-Handling Typical Build Requirements
Including and excluding additional resources Using the Maven Help Plugin: mvn help:effective-pom mvn ...
- git巧妙命令行
git cherry-pick c7081607cfd1bfa99b6e6c70c208e71fbd8767ae
- PageUtil ,简单的分页工具
public class PageUtil { private int totalCount;//总数 private int pageSize=10;//每页显示数量 private int cur ...
- NETCore项目报错 An error occurred while starting the application
在发布到IIS的webApi项目中,运行时报出以上错误, 解决方法: 1.打开发布目录文件夹,找到web.config文件 2.打开web.config找到stdoutLogEnabled=" ...
- [Vue +TS] Use Two-Way Binding in Vue Using @Model Decorator with TypeScript
Vue models, v-model, allow us to use two-way data binding, which is useful in some cases such as for ...
- 关于NSString,NSMutableString,NSArray,NSMutableArray,NSDictionary,NSMutableDictionary
NSString,NSMutableString,NSArray,NSMutableArray,NSDictionary,NSMutableDictionary 在 OC 中我们天天都要用,而我们要怎 ...
- 『干货』分享你最喜欢的技巧和提示(Xcode,objective-c,swift,c...等等)
亲爱的读者们,你们好 !年底将近,分享从过去一年你最喜欢的技巧和建议作为礼物送给新手们.提交你的最喜欢的迅速或objc琐事,实用的提示,意外的发现,实用的解决方法,没用的迷恋,或不论什么其它你认为今年 ...