Description

Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.

Input

The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.

Output

Output the elements of S modulo m in the same way as A is given.

Sample Input

2 2 4
0 1
1 1

Sample Output

1 2
2 3
解题思路:等比矩阵求和,采用递归二分的方法。

上图就给出了求前k项等比矩阵的和的递推式,解法采用递归来求和比较直观,也很好理解。
AC代码(1704ms):
 #include<iostream>
#include<cstring>
using namespace std;
const int maxn=;
int n,k,mod;
struct Matrix{int m[maxn][maxn];}init;
Matrix add(Matrix a,Matrix b){//矩阵加法
Matrix c;
for(int i=;i<n;++i)
for(int j=;j<n;++j)
c.m[i][j]=(a.m[i][j]+b.m[i][j])%mod;
return c;
}
Matrix mul(Matrix a,Matrix b){//矩阵乘法
Matrix c;
for(int i=;i<n;i++){
for(int j=;j<n;j++){
c.m[i][j]=;
for(int k=;k<n;k++)
c.m[i][j]=(c.m[i][j]+a.m[i][k]*b.m[k][j])%mod;
}
}
return c;
}
Matrix quick_power(Matrix a,int x){//矩阵快速幂
Matrix b;memset(b.m,,sizeof(b.m));
for(int i=;i<n;++i)b.m[i][i]=;//单位矩阵
while(x){
if(x&)b=mul(b,a);
a=mul(a,a);x>>=;
}
return b;
}
Matrix sum(Matrix s,int k){//求前k项和
if(k==)return s;//递归出口:当幂指数为1时,返回当前的矩阵
Matrix tmp;memset(tmp.m,,sizeof(tmp.m));//暂存保存中间的矩阵
for(int i=;i<n;++i)tmp.m[i][i]=;//单位矩阵
tmp=add(tmp,quick_power(s,k>>));//计算1+A^{k/2}
tmp=mul(tmp,sum(s,k>>));//计算(1+A^{k/2})*(A + A^2 + A^3 + … + A^{k/2})=(1+A^{k/2})*(S_{k/2})
if(k&)tmp=add(tmp,quick_power(s,k));//若k是奇数,则加上A^k
return tmp;//返回前k项的值
}
void print_rectangle(Matrix r){
for(int i=;i<n;++i)
for(int j=;j<n;++j)
cout<<r.m[i][j]<<((j==n-)?"\n":" ");
}
int main(){
while(cin>>n>>k>>mod){
for(int i=;i<n;++i)
for(int j=;j<n;++j)
cin>>init.m[i][j];
init=sum(init,k);
print_rectangle(init);
}
return ;
}

采用分块矩阵求解可以减少很多时间,具体推导可以结合下图:

矩阵中套矩阵,效率上比上一种方法更快,实际上是2n×2n的矩阵快速幂。就样例展开等式左边的矩阵:

那么最终的答案就是等式右边矩阵中左下角的子矩阵减去单位矩阵,注意某个元素值减-1之后可能为-1,那么此时只需再加上mod即可。

AC代码(610ms):

 #include<iostream>
#include<cstring>
using namespace std;
const int maxn=;
struct Matrix{int m[maxn][maxn];}init;
int n,k,mod;
Matrix mul(Matrix a,Matrix b){//矩阵乘法
Matrix c;
for(int i=;i<*n;i++){//矩阵大小扩大两倍,枚举第一个矩阵的行
for(int j=;j<*n;j++){//枚举第二个矩阵的列
c.m[i][j]=;
for(int k=;k<*n;k++)//枚举第一个矩阵的列
c.m[i][j]=(c.m[i][j]+a.m[i][k]*b.m[k][j])%mod;
}
}
return c;
}
Matrix POW(Matrix a,int x){//矩阵快速幂
Matrix b;memset(b.m,,sizeof(b.m));
for(int i=;i<*n;++i)b.m[i][i]=;//构造单位矩阵
while(x){
if(x&)b=mul(b,a);
a=mul(a,a);x>>=;
}
return b;
}
void print_rectangle(Matrix r){
for(int i=;i<n;++i){
for(int j=;j<n;++j){
if(i==j)r.m[n+i][j]-=;
if(r.m[n+i][j]<)r.m[n+i][j]+=mod;//左下角子矩阵减去单位矩阵,减完可能小于0,因此需要加上mod再取余mod
cout<<r.m[n+i][j]<<((j==n-)?'\n':' ');
}
}
}
int main(){
while(cin>>n>>k>>mod){
memset(init.m,,sizeof(init.m));//全部初始化为0
for(int i=;i<n;++i){//首先初始化矩阵
for(int j=;j<n;++j)
cin>>init.m[i][j];
init.m[n+i][i]=init.m[n+i][n+i]=;//其余是单位矩阵
}
init=POW(init,k+);//求其前k+1项和(左下角包含单位矩阵,最后输出要减去单位矩阵)
print_rectangle(init);//打印等比矩阵A前k项和
}
return ;
}

题解报告:poj 3233 Matrix Power Series(矩阵快速幂)的更多相关文章

  1. POJ 3233 Matrix Power Series 矩阵快速幂

    设S[k] = A + A^2 +````+A^k. 设矩阵T = A[1] 0 E E 这里的E为n*n单位方阵,0为n*n方阵 令A[k] = A ^ k 矩阵B[k] = A[k+1] S[k] ...

  2. POJ 3233 Matrix Power Series 矩阵快速幂+二分求和

    矩阵快速幂,请参照模板 http://www.cnblogs.com/pach/p/5978475.html 直接sum=A+A2+A3...+Ak这样累加肯定会超时,但是 sum=A+A2+...+ ...

  3. Poj 3233 Matrix Power Series(矩阵乘法)

    Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Description Given a n × n matrix A and ...

  4. poj 3233 Matrix Power Series 矩阵求和

    http://poj.org/problem?id=3233 题解 矩阵快速幂+二分等比数列求和 AC代码 #include <stdio.h> #include <math.h&g ...

  5. poj 3233 Matrix Power Series(矩阵二分,高速幂)

    Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 15739   Accepted:  ...

  6. POJ 3233:Matrix Power Series 矩阵快速幂 乘积

    Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 18450   Accepted:  ...

  7. POJ3233 Matrix Power Series 矩阵快速幂 矩阵中的矩阵

    Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 27277   Accepted:  ...

  8. POJ3233:Matrix Power Series(矩阵快速幂+二分)

    http://poj.org/problem?id=3233 题目大意:给定矩阵A,求A + A^2 + A^3 + … + A^k的结果(两个矩阵相加就是对应位置分别相加).输出的数据mod m.k ...

  9. POJ 3233 Matrix Power Series(矩阵高速功率+二分法)

    职务地址:POJ 3233 题目大意:给定矩阵A,求A + A^2 + A^3 + - + A^k的结果(两个矩阵相加就是相应位置分别相加).输出的数据mod m. k<=10^9.     这 ...

  10. POJ 3233 Matrix Power Series(矩阵等比求和)

    题目链接 模板题. #include <cstdio> #include <cstring> #include <iostream> #include <ma ...

随机推荐

  1. Django DTL模板语法中定义变量

  2. [bzoj2141][排队] (分块大法好)

    Description 排排坐,吃果果,生果甜嗦嗦,大家笑呵呵.你一个,我一个,大的分给你,小的留给我,吃完果果唱支歌,大家乐和和.红星幼儿园的小朋友们排起了长长地队伍,准备吃果果.不过因为小朋友们的 ...

  3. noip模拟赛 whzzt-Warmth

    分析:这道题难度和天天爱跑步差不了多少啊......裸的暴力只有10分,最好大的还是那个5%的数据,不过这也才15分,比天天爱跑步的暴力分不知道少到哪里去了. 正解是dp,毕竟要求方案数嘛,但是这个d ...

  4. 【Tomcat】tomcat配置多域名和虚拟路径

    当我们用浏览器在访问网页的时候,如访问www.baidu.com,一般都认为会在DNS服务器上找这个域名对应的IP,然后向这个IP发送请求 并响应,其实在DNS服务器解析之前,本机会先在你的系统配置文 ...

  5. Linux下汇编语言学习笔记80 ---

    这是17年暑假学习Linux汇编语言的笔记记录,参考书目为清华大学出版社 Jeff Duntemann著 梁晓辉译<汇编语言基于Linux环境>的书,喜欢看原版书的同学可以看<Ass ...

  6. Ubuntu 16.04在启动和关机时不显示启动和关机画面且显示详细的命令信息,没有进度条和Logo,或者只有紫色界面,或者没有开机画面等问题解决

    主要有以下解决方法: 1.如果之前配置过Grub来显示详细的命令信息的,那么改回去就行了,参考:http://www.cnblogs.com/EasonJim/p/7129873.html,通过这种方 ...

  7. QT如何修改字符编码格式

    编辑-Select Encoding,然后在弹出窗口中修改字符编码.                      

  8. 一场BC的台前幕后

    #define BC BestCoder 一场BC的台前幕后 起源大概是这种:一个月前的BC#75结束后,AK的人非常多,于是CodeVS群里非常多人吐槽BC#75的质量,这时YJQ对KPM说:&qu ...

  9. 我的CSDN博客停止更新通告

    我的CSDN博客停止更新通告 自从2001年在CSDN发表第一篇博客開始,至今天(2014年6月11日)为止,算起来我己经在CSDN博客上"呆"了13年.共发表251篇原创文章,有 ...

  10. Android BroadcastAnyWhere(Google Bug 17356824)漏洞具体分析

    Android BroadcastAnyWhere(Google Bug 17356824)漏洞具体分析 作者:简行(又名 低端码农) 继上次Android的LaunchAnyWhere组件安全漏洞后 ...