转载并修改自:

http://www.cnblogs.com/wulangzhou/archive/2013/03/14/2959660.html

简单的取拿游戏
一堆石子(或者其它的什么东西),下面是简单的取拿游戏规则:
两名玩家,称为 I 和 II;
有一堆石子,一共 21 个;
一次移动操作包括取走 1 个,2 个,或者 3 个石子,至少得取走 1 个,至多取走 3 个。
玩家 I 先开始,交替取,不可不取。
取走最后一个石子的获胜。

我们可以反向推导。
如果只有 1 个,2 个或者 3 个石子留下,那么下一个将要移动的玩家获胜。
如果有 4 个留下,当前这个玩家取走后留下的石子数必然是 1 个,2 个或者 3 个,这样另一个玩家必胜,因此 4 对于将要开始移动的玩家而言是必败的局面,而对前一个玩家而言是必胜的局面。
如果有 5,6,7 个留下,玩家必须得给对方留下 4 个才能保证自己获胜。
如果有 8 个留下,那么下一个玩家必须留下 5,6,7 个,这样先前那个玩家获胜。
很容易发现,0,4,8,12,16 是我们希望留下的局面,我们希望状态尽可能向这些局面转化。由于本题起初是 21 个石子,由于 21 不是 4 的倍数,因此第一个玩家必然会赢,它只要留下的石子数是 4 的倍数对方就必然输。

这便是 bash 博弈。

P 态和 N 态
在前面的游戏中,0,4,8 等对于先前的玩家(Previous)而言是胜利的局面,称为 P 态。而 1,2,3,5,6,7,9,10,11.。。等对下一个玩家(Next)是胜利的局面,称为 N 态。

在这种无偏组合游戏中,可以从结尾倒推来找出 P 态和 N 态。

步骤1:将所有终结位置标记为必败点(P点);
步骤2: 将所有一步操作能进入必败点(P点)的位置标记为必胜点(N点)
步骤3:如果从某个点开始的所有一步操作都只能进入必胜点(N点) ,则将该点标记为必败点(P点) ;
步骤4: 如果在步骤3未能找到新的必败(P点),则算法终止;否则,返回到步骤2。

很容易看到向 P 态移动会获胜,从一个 P 态开始,你的对手只能移动到 N 态,然后你再移动到 P 态,最终游戏在 P 态终结。

P 态和 N 态有几个特点:

(1) 所有终结点是必败点(P点);

(2) 从任何必胜点(N点)操作,至少有一种方法可以进入必败点(P点);

(3)无论如何操作, 从必败点(P点)都只能进入必胜点(N点).

减法游戏
和上面的取石子游戏类似,假定有一个整数 n,两个玩家轮流从整数中减去一个数 s,其中 s 的取值来自集合 S,对于上面的取石子游戏,S = {1,2,3}。让我们通过类似的倒推找出 P 态。假定 S = {1,3,4}。容易发现 P 态集合是 {0,2,7,9,14,16,。。。}。所有态势集合形成一个循环节,长度为 7。

x 	  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...
position P N P N N N N P N P N N N N P ...

 来自《挑战程序设计竞赛》的例题:

Alice和Bob在玩这样一个游戏。给定k个数字a1,a2,...,ak。一开始,有x枚硬币,Alice和Bob轮流取硬币。每次取的硬币数量一定要在a1,a2,...,ak当中。Alice先取,取走最后一枚硬币的一方获胜。当双方都采取最优策略的时候,谁会获胜?假定a1,a2,...,ak当中一定包含1。

代码:

 int X, K, A[MAX_K];
bool win[MAX_X + ];
void solve()
{
win[] = false;
for (int j = ; j <= X; j++)
{
win[j] = false;
for (int i = ; i < K; i++)
{
win[j] |= a[i] <= j && !win[j - a[i]];
}
} if (win[X]) puts("Alice");
else puts("Bob");
}

bash 博弈的更多相关文章

  1. POJ Football Game 【NIMK博弈 && Bash 博弈】

    Football Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 451   Accepted: 178 Descr ...

  2. HDU 2188 基础bash博弈

    基础的bash博弈,两人捐钱,每次不超过m,谁先捐到n谁胜. 对于一个初始值n,如果其不为(m+1)的倍数,那么先手把余数拿掉,后继游戏中不管如何,后手操作后必定会有数余下,那么先手必胜,反之后手必胜 ...

  3. HDU 1525 类Bash博弈

    给两数a,b,大的数b = b - a*k,a*k为不大于b的数,重复过程,直到一个数为0时,此时当前操作人胜. 可以发现如果每次b=b%a,那么GCD的步数决定了先手后手谁胜,而每次GCD的一步过程 ...

  4. HDU 2897 邂逅明下 ( bash 博弈变形

    HDU 2897 邂逅明下 ( bash 博弈变形 题目大意 有三个数字n,p,q,表示一堆硬币一共有n枚,从这个硬币堆里取硬币,一次最少取p枚,最多q枚,如果剩下少于p枚就要一次取完.两人轮流取,直 ...

  5. 51Nod 1067 Bash博弈V2

    这道题告诉我,一定要去尝试,去推算,不要动不动就找度娘要答案.(惭愧惭愧) 既然是博弈问题,按理我们应该找出规律,怎么找呢,推,把前几项写出来找规律,动手很重要. 上题: 1067 Bash游戏 V2 ...

  6. 51nod1066(bash博弈)

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1066 题意:中文题诶- 思路:感觉博弈全靠yy- 在双方都没有 ...

  7. 51nod_1831: 小C的游戏(Bash博弈 找规律)

    题目链接 此类博弈不需要考虑sg函数,只需要确定必胜态和必败态,解题思路一般为打败先打表找规律,而后找规律给出统一的公式.打表方式:给定初始条件(此题中为ok[0]=ok[1]=0),然后从低到高枚举 ...

  8. (Bash博弈 大数) 51nod1068 Bash游戏 V3

    1068 Bash游戏 V3   有一堆石子共有N个.A B两个人轮流拿,A先拿.每次拿的数量只能是2的正整数次幂,比如(1,2,4,8,16....),拿到最后1颗石子的人获胜.假设A B都非常聪明 ...

  9. (Bash博弈)51nod1067 Bash游戏 V2

    1067 Bash游戏 V2 有一堆石子共有N个.A B两个人轮流拿,A先拿.每次只能拿1,3,4颗,拿到最后1颗石子的人获胜.假设A B都非常聪明,拿石子的过程中不会出现失误.给出N,问最后谁能赢得 ...

随机推荐

  1. GDAL源码编译

    转自阿Fai, GDAL源码编译 在这里,我使用源码编译出C#可以使用的dll静态文件. 一.简单的编译 1.简单的认识 首先进入GDAL的源代码目录,可以看到有几个sln为后缀的文件名,比如make ...

  2. linux 硬件中断调节

    什么是中断 中断interrupts是指硬件主动的来告诉CPU去做某些事情.比如网卡收到数据后可能主动的告诉CPU来处理自己接受到的数据,键盘有了按键输入后会主动告知CPU来读取输入. 硬件主动的打扰 ...

  3. 获取select 选中的option中自定义的名称的之

    <select style="width: 220px;height: 20px;margin: 0 0 0 20px;" id="invest_ticket&qu ...

  4. 功能超级强大的网络工具nc

    摘自:http://www.linuxso.com/command/nc.html 功能说明:功能强大的网络工具语 法:nc [-hlnruz][-g<网关...>][-G<指向器数 ...

  5. Android内存泄露之开篇

    先来想这三个问题 内存泄露是怎么回事 内存会泄露的原因 避免内存泄露 1.内存泄露怎么回事 一个程序中,已经不须要使用某个对象,可是由于仍然有引用指向它垃圾回收器就无法回收它,当然该对象占用的内存就无 ...

  6. Python学习笔记_Python对象

    Python学习笔记_Python对象 Python对象 标准类型 其它内建类型 类型对象和type类型对象 Python的Null对象None 标准类型操作符 对象值的比較 对象身份比較 布尔类型 ...

  7. Python3.4 12306 2015年3月验证码识别

    import ssl import json from PIL import Image import requests import re import urllib.request as urll ...

  8. C++ - 使用copy函数打印容器(container)元素

    使用copy函数打印容器(container)元素 本文地址: http://blog.csdn.net/caroline_wendy C++能够使用copy函数输出容器(container)中的元素 ...

  9. 【Noip模拟By yxj】

    1.randomDescription 给定4个参数A0,N,c,p,你需要按下式构造A1~AN: A[i]=(A[i-1]2+c)mod p 之后,你需要求出A1~AN中,第K大的数值.Input ...

  10. Open Source Computer Vision Library

    https://opencv.org/ OpenCV (Open Source Computer Vision Library) is released under a BSD license and ...