题目描述

Farmer John has noticed that his cows often move between nearby fields. Taking this into account, he wants to plant enough grass in each of his fields not only for the cows situated initially in that field, but also for cows visiting from nearby fields.

Specifically, FJ's farm consists of N fields (1 <= N <= 100,000), where some pairs of fields are connected with bi-directional trails (N-1 of them in total). FJ has designed the farm so that between any two fields i and j, there is a unique path made up of trails connecting between i and j. Field i is home to C(i) cows, although cows sometimes move to a different field by crossing up to K trails (1 <= K <= 20).

FJ wants to plant enough grass in each field i to feed the maximum number of cows, M(i), that could possibly end up in that field -- that is, the number of cows that can potentially reach field i by following at most K trails. Given the structure of FJ's farm and the value of C(i) for each field i, please help FJ compute M(i) for every field i.

给出一棵n个点的树,每个点上有C_i头牛,问每个点k步范围内各有多少头牛。

输入输出格式

输入格式:

  • Line 1: Two space-separated integers, N and K.

  • Lines 2..N: Each line contains two space-separated integers, i and j
    (1 <= i,j <= N) indicating that fields i and j are directly
    connected by a trail.

  • Lines N+1..2N: Line N+i contains the integer C(i). (0 <= C(i) <= 1000)

输出格式:

  • Lines 1..N: Line i should contain the value of M(i).

输入输出样例

输入样例#1:

6 2
5 1
3 6
2 4
2 1
3 2
1
2
3
4
5
6
输出样例#1:

15
21
16
10
8
11

说明

There are 6 fields, with trails connecting (5,1), (3,6), (2,4), (2,1), and (3,2). Field i has C(i) = i cows.

Field 1 has M(1) = 15 cows within a distance of 2 trails, etc.

思路

树形DP+容斥原理;

代码实现

 #include<cstdio>
const int maxn=1e5+;
const int maxm=2e5+;
int n,m;
int f[maxn][],ft[maxn];
int s[maxn],ans[maxn];
int h[maxn],hs;
int et[maxm],en[maxm];
void add(){
int a,b;
scanf("%d%d",&a,&b);
et[++hs]=b,en[hs]=h[a],h[a]=hs;
et[++hs]=a,en[hs]=h[b],h[b]=hs;
}
void dfs(int k,int fa){
ft[k]=fa;
for(int i=;i<=m;i++) f[k][i]+=s[k];
for(int i=h[k];i;i=en[i])
if(et[i]!=fa){
dfs(et[i],k);
for(int j=;j<=m;j++){
f[k][j]+=f[et[i]][j-];
}
}
}
int lca(int k,int son,int now){
int ret=;
while(k&&now>=){
ret-=f[son][now-],ret+=f[k][now];
son=k,k=ft[son],now--;
}
return ret;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<n;i++) add();
for(int i=;i<=n;i++) scanf("%d",&s[i]);
dfs(,);
for(int i=;i<=n;i++){
printf("%d\n",lca(ft[i],i,m-)+f[i][m]);
}
return ;
}

[USACO12FEB]附近的牛Nearby Cows的更多相关文章

  1. 树形DP【洛谷P3047】 [USACO12FEB]附近的牛Nearby Cows

    P3047 [USACO12FEB]附近的牛Nearby Cows 农民约翰已经注意到他的奶牛经常在附近的田野之间移动.考虑到这一点,他想在每一块土地上种上足够的草,不仅是为了最初在这片土地上的奶牛, ...

  2. 洛谷 P3047 [USACO12FEB]附近的牛Nearby Cows

    P3047 [USACO12FEB]附近的牛Nearby Cows 题目描述 Farmer John has noticed that his cows often move between near ...

  3. 【洛谷3047】[USACO12FEB]附近的牛Nearby Cows

    题面 题目描述 Farmer John has noticed that his cows often move between nearby fields. Taking this into acc ...

  4. 【题解】Luogu p3047 [USACO12FEB]附近的牛Nearby Cows 树型dp

    题目描述 Farmer John has noticed that his cows often move between nearby fields. Taking this into accoun ...

  5. LUOGU P3047 [USACO12FEB]附近的牛Nearby Cows

    传送门 解题思路 树形dp,看到数据范围应该能想到是O(nk)级别的算法,进而就可以设出dp状态,dp[x][j]表示以x为根的子树,距离它为i的点的总和,第一遍dp首先自底向上,dp出每个节点的子树 ...

  6. P3047 [USACO12FEB]附近的牛Nearby Cows

    https://www.luogu.org/problemnew/show/P304 1 #include <bits/stdc++.h> 2 #define up(i,l,r) for( ...

  7. 【[USACO12FEB]附近的牛Nearby Cows】

    我记得我调这道题时中耳炎,发烧,于是在学长的指导下过了也没有发题解 发现我自己的思路蛮鬼畜的 常规操作:\(f[i][j]\) 表示到\(i\)的距离为\(j\)的奶牛有多少只,但注意这只是在第二遍d ...

  8. [luoguP3047] [USACO12FEB]附近的牛Nearby Cows(DP)

    传送门 dp[i][j][0] 表示点 i 在以 i 为根的子树中范围为 j 的解 dp[i][j][1] 表示点 i 在除去 以 i 为根的子树中范围为 j 的解 状态转移就很好写了 ——代码 #i ...

  9. luogu 3047 [USACO12FEB]附近的牛Nearby Cows 树形dp

    $k$ 十分小,直接暴力维护 $1$~$k$ 的答案即可. 然后需要用父亲转移到儿子的方式转移一下. Code: #include <bits/stdc++.h> #define M 23 ...

随机推荐

  1. 转 SQL - 字符串中的转义字符

    一位同事在使用SQL处理一串字符时,出现一个意料之外的问题:这个字符串中包括字符‘&’.我们先看一下现象:     SQL> select * from v$version;     B ...

  2. D. Winter Is Coming 贪心(好题)

    http://codeforces.com/contest/747/problem/D 大概的思路就是找到所有两个负数夹着的线段,优先覆盖最小的长度.使得那时候不用换鞋,是最优的. 但是这里有个坑点, ...

  3. AJPFX分析Android退出应用最优雅的方式

    什么是RS式呢?即Receiver+singleTask .我们知道Activity有四种加载模式,而singleTask就是其中的一种,使用这个模式之后,当startActivity时,它先会在当前 ...

  4. 机器学习-Probabilistic interpretation

    Probabilistic interpretation,概率解释  解释为何线性回归的损失函数会选择最小二乘 表示误差,表示unmodeled因素或随机噪声,真实的y和预测出来的值之间是会有误差的, ...

  5. iOS Programming Touch Events and UIResponder

    iOS Programming Touch Events and UIResponder  1 Touch Events  As a subclass of UIResponder, a UIView ...

  6. 文档兼容性定义,使ie按指定的版本解析

    作为开发人员,特别是作为Web的前端开发人员 ,最悲催的莫过于要不断的,不断的去调试各种浏览器的显示效果,而这其中最让人头痛的莫过于MS下的IE系列浏览器,在IE系列中的调试我们将会发现没有一个是好伺 ...

  7. mybatis-paginator对SqlServer分页实现

    package com.github.miemiedev.mybatis.paginator.dialect; import com.github.miemiedev.mybatis.paginato ...

  8. nginx php 配置模板

    server {     listen 80;     server_name    www.xxx.com;     #access_log     logs/www.xxx.com.access. ...

  9. Youtube-dl 简短使用总结

    默认下载bestvideo+bestaudio,并通过ffmpeg -c copy output.mp4 简单的封装进mp4格式,而不进行转码. 有时候bestaudio 是opus编码的,但是mp4 ...

  10. Zed Shaw:程序员的常见健康问题

    Zed Shaw:程序员的常见健康问题 原文作者Zed Shaws是一位作家.软件开发人员.音乐人(下文中提到吉他手),于2010年发布<Learn Python The Hard Way> ...