给n<=50个长度m<=1000的二进制数,记他们为集合T,求满足下面条件的集合S数:令$M=2^m-1$,1、$a \epsilon S \Rightarrow a \ \ xor \ \ M \epsilon S$;2、$a \epsilon S,b \epsilon S \Rightarrow a \ \ and \ \ b \epsilon M$;3、$T \subseteq S$;4、S中每个数都<=M。答案膜1e9+7。

首先不看这T个数,先想想自由状态下有多少个S。由条件1可知,对m个二进制位,S中一定有一个数使得这一位不为空。那么经过若干的and操作就可以把含这一位(i)的数变小变小再变小,变到最小记f(i)。可以发现$f(x) \neq f(y) \Rightarrow f(x) \ \ and \ \ f(y) =0$。如果不这样,那么$f(x) \ \ and \ \ (f(y)\ \ xor \ \ M)$可以得到一个比f(x)更小的,且在x这一位为1的数,就矛盾。

那么自由状态下就相当于把m个位置划分成若干个集合,每个集合里的x的f(x)共享,比如{2,4}对应f(2)=f(4)=1010,问有多少方案。这就是贝尔数了。

贝尔数性质:转自此

n^2递推的话还有:令$B(0,0)=1,B(i,0)=B(i-1,i-1),B(i,j)=B(i-1,j-1)+B(i,j-1)$,则$B(i,0)$就是第i个贝尔数。

OK现在加入T的限制。在T的限制下,令R(i)表示数位i在n个数的状态,就是R(i)的第j位表示第j个数的第i位是1还是0。R(i)不同的两位,在分配集合时绝对绝对不能分在一个集合,因为如果$R(x) \neq R(y),f(x) = f(y)$,那么f(x)与那个导致两个R不相同的数and一下,就可以得到一个更小的f(x),矛盾。所以根据R(i)的不同把位分成若干组,每组算一个贝尔数即可。

 //#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<map>
//#include<bitset>
#include<algorithm>
//#include<cmath>
using namespace std; int n,m;
#define LL long long
LL state[],str[][];
map<LL,int> mp;
const int mod=1e9+;
int main()
{
scanf("%d%d",&m,&n); LL x;
for (int i=;i<n;i++)
for (int j=;j<m;j++)
scanf("%1lld",&x),state[j]|=(x<<i);
for (int i=;i<m;i++) mp[state[i]]++;
str[][]=;
for (int i=;i<=m;i++)
{
str[i][]=str[i-][i-];
for (int j=;j<=i;j++) str[i][j]=str[i][j-]+str[i-][j-],str[i][j]-=str[i][j]>=mod?mod:;
}
int ans=;
for (map<LL,int>::iterator i=mp.begin();i!=mp.end();i++) ans=1ll*ans*str[(*i).second][]%mod;
printf("%d\n",ans);
return ;
}

贝尔数--Codeforces908E. New Year and Entity Enumeration的更多相关文章

  1. 【CodeForces】908 E. New Year and Entity Enumeration

    [题目]E. New Year and Entity Enumeration [题意]给定集合T包含n个m长二进制数,要求包含集合T且满足以下条件的集合S数:长度<=m,非和与的结果都在集合中. ...

  2. 【CF908E】New Year and Entity Enumeration 位运算+DP

    [CF908E]New Year and Entity Enumeration 题意:给定$M=2^m-1$,我们称一个集合S是好的,当且仅当它满足:1.$\forall a\in S,a\  \ma ...

  3. 贝尔数(来自维基百科)& Stirling数

    贝尔数   贝尔数以埃里克·坦普尔·贝尔(Eric Temple Bell)为名,是组合数学中的一组整数数列,开首是(OEIS的A000110数列):   Bell Number Bn是基数为n的集合 ...

  4. HDU 2512 一卡通大冒险(第二类斯特林数+贝尔数)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2512 题目大意:因为长期钻研算法, 无暇顾及个人问题,BUAA ACM/ICPC 训练小组的帅哥们大部 ...

  5. bzoj 3501 PA2008 Cliquers Strike Back——贝尔数

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3501 用贝尔三角形 p^2 地预处理 p 以内的贝尔数.可以模(mod-1)(它是每个分解下 ...

  6. bzoj 3501 PA2008 Cliquers Strike Back —— 贝尔数

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3501 用贝尔三角预处理贝尔数,拆模数并在 \( p \) 进制下使用公式,因为这样每次角标增 ...

  7. hdu2643&&hdu2512——斯特林数&&贝尔数

    hdu2643 题意:$n$ 个人的排名情况数($n \leq 100$) 分析:考虑 $n$ 个有区别的球放到 $m$ 个有区别的盒子里.无空盒的方案数为 $m!\cdot S(n, m)$. 这题 ...

  8. hdu4767 Bell——求第n项贝尔数

    题意 设第 $n$ 个Bell数为 $B_n$,求 $B_n \ mod  \ 95041567$.($1 \leq  n  \leq  2^{31}$) 分析 贝尔数的概念和性质,维基百科上有,这里 ...

  9. Good Bye 2017 E. New Year and Entity Enumeration

    先按照绿点进行分块 第一个绿点和最后一个绿点之后很好处理不说了 两个绿点之间的讨论: 有两种方案 1:红(蓝)点和绿点顺序连接,距离为相邻绿点距离(也就是双倍绿点距离) 2:红(蓝)点和绿点的点阵中寻 ...

随机推荐

  1. 216 Combination Sum III 组合总和 III

    找出所有可能的 k 个数,使其相加之和为 n,只允许使用数字1-9,并且每一种组合中的数字是唯一的.示例 1:输入: k = 3, n = 7输出:[[1,2,4]]示例 2:输入: k = 3, n ...

  2. 求指教--hadoop2.4.1集群搭建及管理遇到的问题

    集群规划: 主机名 IP 安装的软件 运行的进程 hadooop 192.168.1.69 jdk.hadoop NameNode.DFSZKFailoverController(zkfc) hado ...

  3. (五)SpringIoc之Bean的作用域

    此文转自 https://blog.csdn.net/icarus_wang/article/details/51586776# 有状态bean和无状态bean请看 https://blog.csdn ...

  4. 单例模式及php实现

    单例模式: 单例模式(Singleton Pattern):单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例,这个类称为单例类,它提供全局访问的方法. 单例模式的要点有三个:一 ...

  5. hihocoder1710 等差子数列

    思路: 将数列合并之后使用线段树.边界条件容易写错. 实现: #include <bits/stdc++.h> using namespace std; ; const int INF = ...

  6. SceneAction$$FastClassByCGLIB$$7330f7b9.invoke(int, Object, Object[]) line: not available

    现象:在调试状态下,断点可以进入ACTION ,当调用service的时候,发现无法进入service中的断点,就报了题目中的错误. 过程:1.降低JDK.因为本工程是用JDK1.6编译的,maven ...

  7. wps 图片代码 复制 粘贴

    <table><tr><td><img src="C:\Users\Administrator\Desktop\QQ截图20160921180946 ...

  8. BEGIN - 开始一个事务块

    SYNOPSIS BEGIN [ WORK | TRANSACTION ] DESCRIPTION 描述 BEGIN 初始化一个事务块, 也就是说所有 BEGIN 命令后的用户语句都将在一个事务里面执 ...

  9. python常见问题一(安装报错)

    常见问题一:我在安装python2.7时,提示错误:'An error occurred during the installation of assembly 'Microsoft.VC90.CRT ...

  10. MySQL索引的用处

    MySQL索引在MySQL数据库中,可以有效提高查询的效率,尤其是查询数据量非常大时,效果更为明显,往往能使查询速度加快成千上万倍. MySQL索引是很重要的概念,应用的范围非常广.那么,MySQL索 ...