- > 动规讲解基础讲解四——最大子段和问题
给出一个整数数组a(正负数都有),如何找出一个连续子数组(可以一个都不取,那么结果为0),使得其中的和最大?

看见这个问题你的第一反应是用什么算法?
(1) 枚举?对,枚举是万能的!枚举什么?子数组的位置!好枚举一个开头位置i,一个结尾位置j>=i,再求a[i..j]之间所有数的和,找出最大的就可以啦。好的,时间复杂度?
(1.2)枚举j,O(n)
(1.3)求和a[i..j],O(n)
for(int i = ; i <= n; i++)
{
for(int j = i; j <= n; j++)
{
int sum = ;
for(int k = i; k <= j; k++)
sum += a[k]; max = Max(max, sum);
}
}
(2.1)枚举i,O(n)
(2. 2)枚举j,O(n) ,这里我们发现a[i..j]的和不是a[i..j – 1]的和加上a[j]么?所以我们在这里当j增加1的时候把a[j]加到之前的结果上不就可以了么?对!所以我们毫不费力地降低了复杂度,得到了一个新地时间复杂度为O(n^2)的更快的算法。
for(int i = ; i <= n; i++)
{
int sum = ; for(int j = i; j <= n; j++)
{
sum += a[j];
max = Max(max, sum);
}
}
(3)分治一下?
endmax = answer = a[]
for i = to n do
endmax = max(endmax, ) + a[i]
answer = max(answer, endmax)
endfor
start =
answerstart = asnwerend =
endmax = answer = a[]
for end = to n do
if endmax > then
endmax += a[end]
else
endmax = a[end]
start = end
endif
if endmax > answer then
answer = endmax
answerstart = start
answerend = end
endif
endfor
这里我们直接用end作为循环变量,通过更新与否决定start是否改变。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
long long n,a[],dp,answer;
int main()
{
cin>>n;
for(int i=;i<=n;i++) cin>>a[i];
dp=answer=a[];
for(int i=;i<=n;i++){
dp=max(dp,0LL)+a[i];
answer=max(dp,answer);
}
cout<<answer;
}
如果对你有所帮助,别忘了加好评哦;么么哒!!下次见!88
- > 动规讲解基础讲解四——最大子段和问题的更多相关文章
- - > 动规讲解基础讲解一——01背包(模板)
作为动态规划的基础,01背包的思想在许多动规问题中会经常出现,so,熟练的掌握01背包的思路是极其重要的: 有n件物品,第i件物品(I = 1,2,3…n)的价值是vi, 重量是wi,我们有一个能承重 ...
- - > 动规讲解基础讲解四——矩阵取数
给定一个m行n列的矩阵,矩阵每个元素是一个正整数,你现在在左上角(第一行第一列),你需要走到右下角(第m行,第n列),每次只能朝右或者下走到相邻的位置,不能走出矩阵.走过的数的总和作为你的得分,求最大 ...
- - > 动规讲解基础讲解五——最长公共子序列问题
一些概念: (1)子序列: 一个序列A = a1,a2,……an,中任意删除若干项,剩余的序列叫做A的一个子序列.也可以认为是从序列A按原顺序保留任意若干项得到的序列. 例如: 对序列 1,3,5 ...
- - > 动规讲解基础讲解六——编辑距离问题
给定两个字符串S和T,对于T我们允许三种操作: (1) 在任意位置添加任意字符(2) 删除存在的任意字符(3) 修改任意字符 问最少操作多少次可以把字符串T变成S? 例如: S= “ABCF” ...
- - > 动规讲解基础讲解八——正整数分组
将一堆正整数分为2组,要求2组的和相差最小.例如:1 2 3 4 5,将1 2 4分为1组,3 5分为1组,两组和相差1,是所有方案中相差最少的. 整数个数n<=100,所有整数的和<=1 ...
- - > 动规讲解基础讲解七——最长单增子序列
(LIS Longest Increasing Subsequence)给定一个数列,从中删掉任意若干项剩余的序列叫做它的一个子序列,求它的最长的子序列,满足子序列中的元素是单调递增的. 例如给定序列 ...
- - > 动规讲解基础讲解三——混合背包(背包模板)
将01背包,完全背包,和多重完全背包问题结合起来,那么就是混合三种背的问题 根据三种背包的思想,那么可以得到混合三种背包的问题可以这样子求解 for(int i=1; i<=N; ++i) if ...
- 第二十四节:Java语言基础-讲解数组的综合应用
数组的综合应用 // 打印数组 public static void printArray(int[] arr) { for(int x=0;x<arr.length;x++) { if(x!= ...
- Verilog语法基础讲解之参数化设计
Verilog语法基础讲解之参数化设计 在Verilog语法中,可以实现参数化设计.所谓参数化设计,就是在一个功能模块中,对于一个常量,其值在不同的应用场合需要设置为不同的置,则将此值在设计时使用 ...
随机推荐
- POJ 2187 凸包+旋转卡壳
思路: 求个凸包 旋转卡壳一下 就求出来最远点对了 注意共线情况 也就是说 凸包如果有一堆点共线保留端点即可 //By SiriusRen #include <cmath> #incl ...
- pycharm但多行注释快捷键
pycharm中同时注释多行代码快捷键: 代码选中的条件下,同时按住 Ctrl+/,被选中行被注释,再次按下Ctrl+/,注释被取消
- 371 Sum of Two Integers 两整数之和
不使用运算符 + 和-,计算两整数a .b之和.示例:若 a = 1 ,b = 2,返回 3. 详见:https://leetcode.com/problems/sum-of-two-integers ...
- connection failed to http://nssa-sensor3:11000/oozie/?user.name=oozie(<urlopen erroer Errno 111] Connection refused>)解决办法(图文详解)
不多说,直接上干货! 解决办法 Copy/Paste oozie.services property tag set from oozie-default.xml to oozie-site.xml. ...
- maxItemsInObjectGraph解释
maxItemsInObjectGraph:一个整数,指定要序列化或反序列化的最大项数,可以限制对象图中要序列化的项数.默认的就是65535,当客户端与WebService之间传递的是对象要序列化的个 ...
- Quartz.Net学习笔记(2)-简介
一.Quartz.Net是什么 1.来源 Quartz.Net是一个开源的作业调度框架: 2.下载地址 官网地址:http://www.quartz-scheduler.net/documentati ...
- MyElipse如何添加Emmet插件
把这个jar文件放到myeclipse2014安装目录下dropins文件夹中,然后重启myeclipse即可. 可到window-->perferences里查看,如果成功则会看到emmet选 ...
- 转载pcb设计详细版
http://www.51hei.com/bbs/dpj-52438-1.html 详细的altium designer制作PCB步骤,按照步骤一步步的学习就会自己制作PCB模型 目 录 实验三 层 ...
- 读《实战GUI自动化测试》之:第三步,如何提高测试结果分析的效率
转自:http://www.ibm.com/developerworks/cn/rational/r-cn-guiautotesting3/ 所谓自动化测试,就是“自动化”+“测试”.自动化本身显然不 ...
- jquery.ajax之beforeSend方法使用介绍
常见的一种效果,在用ajax请求时,没有返回前会出现前出现一个转动的loading小图标或者“内容加载中..”,用来告知用户正在请求数据.这个就可以用beforeSend方法来实现. 下载demo:a ...