当前,Memcached、Redis这类分布式kv缓存已经非常普遍。从本篇开始,本系列将分析分布式缓存相关的原理、使用策略和最佳实践。

我们知道Memcached的分布式其实是一种“伪分布式”,也就是它的服务器结点之间其实是相互无关联的,之间没有网络拓扑关系,由客户端来决定一个key是存放到哪台机器。

具体来讲,假设我有多台memcached服务器,编号分别为m0,m1,m2,…。对于一个key,由客户端来决定存放到哪台机器,那最简单的hash公式就是 key % N,其中N是机器的总数。

但这有个问题,一旦机器数变少,或者增加机器,N发生变化,那之前存放的数据就全部无效了。因为你按照新的N值取模计算出的机器编号,和当时按旧的N值取模算出的机器编号肯定是不等的,也就意味着绝大部分缓存会失效。

这个问题的解决办法就是用1种特别的Hash函数,尽可能使得,增加机器/减少机器时,缓存失效的数目降到最低,这就是Hash环,或者叫一致性Hash。

Hash环
上面说的Hash函数,只经过了1次hash,即把key hash到对应的机器编号。
而Hash环有2次Hash:
(1)把所有机器编号hash到这个环上
(2)把key也hash到这个环上。然后在这个环上进行匹配,看这个key和哪台机器匹配。

具体来讲,如下:

假定有这样一个Hash函数,其值空间为(0到2的32次方-1) ,也就是说,其hash值是个32位无整型数字 ,这些数字组成一个环。

然后,先对机器进行hash(比如根据机器的ip),算出每台机器在这个环上的位置; 再对key进行hash,算出该key在环上的位置,然后从这个位置往前走,遇到的第一台机器就是该key对应的机器,就把该(key, value) 存储到该机器上。

如下图所示:

首先计算出每台Cache服务器在环上的位置(图中的大圆圈);然后每来一个(key, value),计算出在环上的位置(图中的小圆圈),然后顺时针走,遇到的第1个机器,就是其要存储的机器。

这里的关键点是:当你增加/减少机器时,其他机器在环上的位置并不会发生改变。这样只有增加的那台机器、或者减少的那台机器附近的数据会失效,其他机器上的数据都还是有效的。

数据倾斜问题
当你机器不多的时候,很可能出现几台机器在环上面贴的很近,不是在环上均匀分布。这将会导致大部分数据,都会集中在某1台机器上。

为了解决这个问题,可以引入“虚拟机器”的概念,也就是说:1台机器,我在环上面计算出多个位置。怎么弄呢? 假设用机器的ip来hash,我可以在ip后面加上几个编号, ip_1, ip_2, ip_3, … 把1台物理机器生个多个虚拟机器的编号。

数据首先映射到“虚拟机器上”,再从“虚拟机器”映射到物理机器上。因为虚拟机器可以很多,在环上面均匀分布,从而保证数据均匀分布到物理机器上面。

ZK的引入
上面我们提到了服务器的机器增加、减少,问题是客户端怎么知道呢?

一种笨办法就是手动的,当服务器机器增加、减少时候,重新配置客户端,重启客户端。

另外一种,就是引入ZK,服务器的节点列表注册到ZK上面,客户端监听ZK。发现结点数发生变化,自动更新自己的配置。

当然,不用ZK,用一个其他的中心结点,只要能实现这种更改的通知,也是可以的。

Hash环/一致性Hash原理的更多相关文章

  1. 分布式缓存--系列1 -- Hash环/一致性Hash原理

    当前,Memcached.Redis这类分布式kv缓存已经非常普遍.从本篇开始,本系列将分析分布式缓存相关的原理.使用策略和最佳实践. 我们知道Memcached的分布式其实是一种“伪分布式”,也就是 ...

  2. 分布式缓存 - hash环/一致性hash

    一 引言 当前memcached,redis这类分布式kv缓存已经非常普遍.我们知道memcached的分布式其实是一种"伪分布式",也就是它的服务器节点之间其实是无关联的,之间没 ...

  3. hash·余数hash和一致性hash

    网站的伸缩性架构中,分布式的设计是现在的基本应用. 在memcached的分布式架构中,key-value缓存的命中通常采用分布式的算法 一.余数Hash     简单的路由算法可以使用余数Hash: ...

  4. 一致性Hash(Consistent Hashing)原理剖析

    引入 在业务开发中,我们常把数据持久化到数据库中.如果需要读取这些数据,除了直接从数据库中读取外,为了减轻数据库的访问压力以及提高访问速度,我们更多地引入缓存来对数据进行存取.读取数据的过程一般为: ...

  5. 一致性Hash算法的原理与实现(分布式映射算法)

    一致性Hash算法解决的问题: 解决分布式系统中的负载均衡问题 背景问题:有N台服务器提供缓存服务,需要对服务器进行负载均衡,将请求平均发到每台服务器上,每台服务器负载1/N的服务 硬Hash映射:将 ...

  6. 7.redis 集群模式的工作原理能说一下么?在集群模式下,redis 的 key 是如何寻址的?分布式寻址都有哪些算法?了解一致性 hash 算法吗?

    作者:中华石杉 面试题 redis 集群模式的工作原理能说一下么?在集群模式下,redis 的 key 是如何寻址的?分布式寻址都有哪些算法?了解一致性 hash 算法吗? 面试官心理分析 在前几年, ...

  7. 一致性 hash 环

    一致性 hash 环 最近做项目 做了一个分发器 ,需要 根据请求携带的参数 把请求分发到 不同的服务器上面,最终我选择使用 一致性hash 环 来实现 ,本篇 就主要讲解一下 一致性hash环 它的 ...

  8. 给面试官讲明白:一致性Hash的原理和实践

    "一致性hash的设计初衷是解决分布式缓存问题,它不仅能起到hash作用,还可以在服务器宕机时,尽量少地迁移数据.因此被广泛用于状态服务的路由功能" 01分布式系统的路由算法 假设 ...

  9. 一致性hash在分布式系统中的应用

    场景 如果要设计一套KV存储的系统,用户PUT一个key和value,存储到系统中,并且提供用户根据key来GET对应的value.要求随着用户规模变大,系统是可以水平扩展的,主要要解决以下几个问题. ...

随机推荐

  1. Lily HBase Indexer同步HBase二级索引到Solr丢失数据的问题分析

    一.问题描述二.分析步骤2.1 查看日志2.2 修改Solr的硬提交2.3 寻求StackOverFlow帮助2.4 修改了read-row="never"后,丢失部分字段2.5 ...

  2. hadoop mapred和mapreduce包

    mapred包是老的1.0的map reduce api mapreduce包是新的2.0的map reduce api

  3. C# 给窗体添加事件

    1.https://zhidao.baidu.com/question/588485101.html

  4. Mysql常见函数

    一.单行函数 1.字符函数 concat拼接 substr截取子串 upper转换成大写 lower转换成小写 trim去前后指定的空格和字符 ltrim去左边空格 rtrim去右边空格 replac ...

  5. SQL JOIN连接分类[转]

    1.内联接(典型的联接运算,使用像 =  或 <> 之类的比较运算符):包括相等联接和自然联接: 内联接使用比较运算符根据每个表共有的列的值匹配两个表中的行:    2.外联接.外联接可以 ...

  6. html5--6-47 阶段练习2-渐变按钮

    html5--6-47 阶段练习2-渐变按钮 实例 @charset="UTF-8"; .but1{ padding: 10px 20px; font-size:16px; tex ...

  7. [AHOI 2005] 航线规划

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1969 [算法] 首先离线 , 将删边操作转化为加边操作 不妨首先将这张图按边-双连通 ...

  8. JAVA RTTI

    基础类可接收我们发给派生类的任何消息,因为两者拥有完全一致的接口.我们要做的全部事情就是从派生上溯造型,而且永远不需要回过头来检查对象的准确类型是什么.所有细节都已通过多态性获得了完美的控制. 但经过 ...

  9. iOS多线程GCD的简单使用

    在iOS开发中,苹果提供了三种多线程技术,分别是: (1)NSThread (2)NSOperation (3)GCD 简单介绍一下GCD的使用. GCD全称 Grand Central Dispat ...

  10. 如何用JavaScript实现获取验证码的效果

    转自:http://www.php.cn/js-tutorial-411734.html HTML部分: 1 2 3 4 5 6 7 <body onload='createCode()'> ...