bzoj 4037: [HAOI2015]数字串拆分【dp+矩阵加速】
首先f长得就很像能矩阵优化的,先构造转移矩阵(这里有一点神奇的地方,我看网上的blog和我构造的矩阵完全不一样还以为我的构造能力又丧失了,后来惊奇的发现我把那篇blog里的构造矩阵部分换成我的构造方式,交了一下完全没问题2333,并不知道为啥)
好久没写矩阵加速了,顺便说一下我的构造方法吧:
首先明确转移矩阵的目的,设m为构成f[i]的最小项f[i-m],也就是f[i]=f[i-m]+f[i-...]+f[i-...]+....,其中i-m是最小的。我们需要构造一个m大小的矩阵,使得{f[i-m],f[i-m+1].....f[i-1}乘上这个正方形矩阵变成{f[i-m+1],f[i-m+2]....f[i]}然后因为矩阵乘法是一行乘一列,所以每个右边的每个f[i]都对应了一行矩阵和左边的每项依次相乘。拿这道题的递推式,m=3为例:
以上,我也不知道我在说什么。
然后这道题的精髓在于它使用f的矩阵进行g的dp。设f[i]为前i位的答案,因为矩阵乘法的结合律,我们可以记\( g[i]=\sum_{j=1}^{m}g[j]*c[j+1][i] \)。然后考虑如何预处理出c,可以设c[i][j]为i这个数(1<=i<=9)的\( j^{10} \)次(假装高精)。
总之,一道好题。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=505,mod=998244353;
int n,m;
char s[N];
struct qwe
{
int a[7][7];
void init()
{
memset(a,0,sizeof(a));
}
void pre()
{
memset(a,0,sizeof(a));
for(int i=1;i<=m;i++)
a[i][i]=1;
}
qwe operator * (const qwe &b) const
{
qwe c;
c.init();
for(int k=1;k<=m;k++)
for(int i=1;i<=m;i++)
for(int j=1;j<=m;j++)
c.a[i][j]=(c.a[i][j]+1ll*a[i][k]*b.a[k][j]%mod)%mod;
return c;
}
qwe operator + (const qwe &b) const
{
qwe c;
c.init();
for(int i=1;i<=m;i++)
for(int j=1;j<=m;j++)
c.a[i][j]=(b.a[i][j]+a[i][j])%mod;
return c;
}
}f[N],a,c[15][N];
qwe ksm(qwe a,int b)
{
qwe r;
r.pre();
while(b)
{
if(b&1)
r=r*a;
a=a*a;
b>>=1;
}
return r;
}
int main()
{
scanf("%s%d",s+1,&m);
n=strlen(s+1);
for(int i=1;i<=n;i++)
s[i]-='0';
for(int i=1;i<m;i++)
a.a[i][i+1]=1;
for(int i=1;i<=m;i++)
a.a[m][i]=1;
c[0][1].pre();
for(int i=1;i<=9;i++)
{
c[i][1]=c[i-1][1]*a;
for(int j=2;j<=n;j++)
c[i][j]=ksm(c[i][j-1],10);
}
f[0].a[1][m]=1;
for(int i=1;i<=n;i++)
{
qwe tmp=c[s[i]][1];
for(int j=i-1;j>=0;j--)
{
f[i]=f[i]+f[j]*tmp;
if(j&&s[j])
tmp=tmp*c[s[j]][i-j+1];
}
}
printf("%d\n",f[n].a[1][m]);
return 0;
}
bzoj 4037: [HAOI2015]数字串拆分【dp+矩阵加速】的更多相关文章
- BZOJ 4037 [HAOI2015]数字串拆分 ——动态规划
拆分的情况下,发现f数组本身并不是很好递推. 因为f(123)=f(123)/f(12+3)/f(1+2+3). 然后考虑f可以怎么表示f(n)=a0*M^n M为转移矩阵. 然后发现 f(x+y)= ...
- 洛谷3176 [HAOI2015]数字串拆分 (矩阵乘法+dp)
qwq真的是一道好题qwq自己做基本是必不可能做出来的. 首先,如果这个题目只是求一个\(f\)数组的话,那就是一道裸题. 首先,根据样例 根据题目描述,我们能发现其实同样数字的不同排列,也是属于不同 ...
- BZOJ4037:[HAOI2015]数字串拆分——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4037 你有一个长度为n的数字串.定义f(S)为将S拆分成若干个1~m的数的和的方案数,比如m=2时 ...
- bzoj4037 [HAOI2015]数字串拆分
Description 你有一个长度为n的数字串.定义f(S)为将S拆分成若干个1~m的数的和的方案数,比如m=2时,f(4)=5,分别为4=1+1+1+1你可以将这个数字串分割成若干个数字(允许前导 ...
- [HAOI2015]数字串拆分
题目描述 你有一个长度为n的数字串.定义f(S)为将S拆分成若干个1~m的数的和的方案数,比如m=2时,f(4)=5,分别为4=1+1+1+1你可以将这个数字串分割成若干个数字(允许前导0),将他们加 ...
- loj#2128. 「HAOI2015」数字串拆分 矩阵乘法
目录 题目链接 题解 代码 题目链接 loj#2128. 「HAOI2015」数字串拆分 题解 \(f(s)\)对于\(f(i) = \sum_{j = i - m}^{i - 1}f(j)\) 这个 ...
- 【LOJ】#2128. 「HAOI2015」数字串拆分
题解 题中给的函数可以用矩阵快速幂递推 我们记一个数组dp[i](这个数组每个元素是一个矩阵)表示从1到i所有的数字经过拆分矩阵递推的加和 转移方法是 \(dp[i] = \sum_{j = 0}^{ ...
- HihoCoder - 1807:好的数字串 (KMP DP)
Sample Input 6 1212 Sample Output 298 给定一个数字字符串S,如果一个数字字符串(只包含0-9,可以有前导0)中出现且只出现1次S,我们就称这个字符串是好的. 例如 ...
- [BZOJ 4033] [HAOI2015] T1 【树形DP】
题目链接:BZOJ - 4033 题目分析 使用树形DP,用 f[i][j] 表示在以 i 为根的子树,有 j 个黑点的最大权值. 这个权值指的是,这个子树内部的点对间距离的贡献,以及 i 和 Fat ...
随机推荐
- UINavigationController 小记
1.以栈的形式管理视图控制器,push 和 pop 方法来弹入和弹出控制器,最多只能显示一个视图控制器. 2.使用pop方法可以移除栈顶控制器,当一个控制器被pop后,控制器内存会被释放了. 3.一层 ...
- HDU 6397 组合数学+容斥 母函数
Character Encoding Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Oth ...
- Windows如何在cmd命令行中查看、修改、删除与添加、设置环境变量
首先明确一点: 所有的在cmd命令行下对环境变量的修改只对当前窗口有效,不是永久性的修改.也就是说当关闭此cmd命令行窗口后,将不再起作用.永久性修改环境变量的方法有两种:一种是直接修改注册表(此种方 ...
- Java调用WSDL接口
1.首先准备jar包: 2.代码调用如下: String url="url地址"; QName qName=new QName("命名空间","接口名 ...
- 【Todo】STAR面试法
今天在面试培训的时候,接触到了STAR面试法. 觉得挺好的,用来准备非技术面试,还蛮全面的.所以可以多了解一下. 可以参考:http://www.hrloo.com/rz/73652.html
- Windows下C/C++连接mysql数据库的方法
步骤 安装MySQL数据库 项目属性页->C/C++->常规->附加包含目录:xxx\mysql Server 5.6\include 项目属性页->链接器->常规-&g ...
- CentOS 7下安装Logstash ELK Stack 日志管理系统(下)
修改防火墙,对外开放tcp/5601 [root@elk elk]# firewall-cmd --permanent --add-port=5601/tcpSuccess[root@elk elk] ...
- sdk manager 创建的虚拟机启动的时候总是在Android字样解决
一直显示Android字样.仅仅须要删除文件夹下的snapshots.img 找到sdk的文件夹下的\tools\lib\emulator,然后删除上面的文件snapshots.img就可以,我的sd ...
- hdu 3549 Flow Problem(最大流模板题)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3549 Problem Description Network flow is a well-known ...
- FZU 2150 Fire Game (暴力BFS)
[题目链接]click here~~ [题目大意]: 两个熊孩子要把一个正方形上的草都给烧掉,他俩同一时候放火烧.烧第一块的时候是不花时间的.每一块着火的都能够在下一秒烧向上下左右四块#代表草地,.代 ...