解法

dp表示目前的种数,要全部装满所以f[0]=1其余为0的初始化是必不可少的

代码

#include <bits/stdc++.h>
using namespace std;
int t;
int v[]={1,5,10,25,50};
int dp[10000];
void DP()
{
memset(dp,0,sizeof(dp));
dp[0]=1;
for(int i=0;i<5;i++)
for(int j=v[i];j<=t;j++)
dp[j]+=dp[j-v[i]];
cout<<dp[t]<<"\n";
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
while(cin>>t)
DP();
}

UVA 674 Coin Change (完全背包)的更多相关文章

  1. UVA.674 Coin Change (DP 完全背包)

    UVA.674 Coin Change (DP) 题意分析 有5种硬币, 面值分别为1.5.10.25.50,现在给出金额,问可以用多少种方式组成该面值. 每种硬币的数量是无限的.典型完全背包. 状态 ...

  2. UVA 674 Coin Change(dp)

    UVA 674  Coin Change  解题报告 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730#problem/ ...

  3. UVA 674 Coin Change 硬币转换(完全背包,常规)

    题意:有5种硬币,个数无限的,组成n元的不同方案有多少种? 思路:常规完全背包.重点在dp[0]=1,dp[j]中记录的是组成 j 元的方案数.状态转移方程dp[j+coin[i]]+=dp[j]. ...

  4. uva 674 Coin Change 换钱币【完全背包】

    题目链接:https://vjudge.net/contest/59424#problem/A 题目大意: 有5种硬币, 面值分别为1.5.10.25.50,现在给出金额,问可以用多少种方式组成该面值 ...

  5. UVa 674 Coin Change(完全背包)

    https://vjudge.net/problem/UVA-674 题意: 计算兑换零钱的方法共有几种. 思路: 完全背包基础题. #include<iostream> #include ...

  6. UVA 674 Coin Change (DP)

    Suppose there are 5 types of coins: 50-cent, 25-cent, 10-cent, 5-cent, and 1-cent. We want to make c ...

  7. UVa 674 Coin Change【记忆化搜索】

    题意:给出1,5,10,25,50五种硬币,再给出n,问有多少种不同的方案能够凑齐n 自己写的时候写出来方案数老是更少(用的一维的) 后来搜题解发现,要用二维的来写 http://blog.csdn. ...

  8. UVA 674 Coin Change 换硬币 经典dp入门题

    题意:有1,5,10,25,50五种硬币,给出一个数字,问又几种凑钱的方式能凑出这个数. 经典的dp题...可以递推也可以记忆化搜索... 我个人比较喜欢记忆化搜索,递推不是很熟练. 记忆化搜索:很白 ...

  9. UVa 674: Coin Change

    动态规划题.对于1,5,10,25,50五种币值的硬币,编号为0~4,存入数组cent中.数组iWay的元素iWay[k][i]表示仅使用0~i的硬币凑出k分钱的方法数,按是否使用编号为i的硬币分类, ...

随机推荐

  1. android7.0 编译问题及解决【转】

    本文转载自:http://blog.csdn.net/zhangmingbao2016/article/details/52699182 注意:Linux操作系统上编译Android 7.0必须使用o ...

  2. YTU 2639: 改错题:类中私有成员的访问

    2639: 改错题:类中私有成员的访问 时间限制: 1 Sec  内存限制: 128 MB 提交: 431  解决: 297 题目描述 /* 改错题: 设计一个日期类和时间类,并编写全局函数displ ...

  3. 韩顺平Oracle笔记

    韩顺平Oracle笔记 分类: DataBase2011-09-07 10:24 3009人阅读 评论(0) 收藏 举报 oracle数据库sqljdbcsystemstring   目录(?)[-] ...

  4. [Codeforces 449B] Jzzhu and Cities

    [题目链接] https://codeforces.com/contest/449/problem/B [算法] 最短路 时间复杂度 : O(N ^ 2) [代码] #include<bits/ ...

  5. 【HDU 1005】 Number Sequence

    [题目链接] 点击打开链接 [算法] 矩阵乘法快速幂,即可 [代码] #include<bits/stdc++.h> using namespace std; int a,b,n; str ...

  6. P3199 [HNOI2009]最小圈 01分数规划

    裸题,第二个权值是自己点的个数.二分之后用spfa判负环就行了. 题目描述 考虑带权的有向图G=(V,E)G=(V,E)G=(V,E)以及w:E→Rw:E\rightarrow Rw:E→R,每条边e ...

  7. Chapter 4 Syntax Analysis

    Chapter 4 Syntax Analysis This chapter is devoted to parsing methods that are typically used in comp ...

  8. jquery autocomplete自动补全

    简单用法: $(function(){ var data = "the People's Republic of China".split(" "); $(&q ...

  9. jQuery的each内部的break,continue

    // break, continue在each等迭代器里都不可用 // return false = break // return true = continue function isClicke ...

  10. Linux学习笔记之Linux相关知识

    [想成为某一方面的大神,没有捷径可走,只能不断的记录.练习.总结.coding……] notes:主要从网上摘录了一些关于Linux的历史以及一些相关内容,以便对Linux系统有一定的了解.这不但可以 ...