NOIP2000方格取数(洛谷,动态规划递推)
先上题目:
P1004 方格取数
下面上ac代码:
///如果先走第一个再走第二个不可控因素太多
#include<bits/stdc++.h>
#define ll long long
using namespace std;
ll f[][][][];
ll a[][];
int main()
{
ios::sync_with_stdio(false);
ll n,xx,yy,zz;
cin>>n;
while(scanf("%lld %lld %lld",&xx,&yy,&zz)==&&!(xx==&&yy==&&zz==))
a[xx][yy]=zz;//导入基本数据
//我们需要f[n][n][n][n]作为答案,它表示走完两次的总数
// f[1][1][1][1]=a[1][1];//这里不用赋初值
for(ll i=;i<=n;i++)
for(ll j=;j<=n;j++)
for(ll x=;x<=n;x++)
for(ll y=;y<=n;y++)
{
f[i][j][x][y]=a[i][j]+a[x][y]+max(max(max(f[i-][j][x-][y],f[i-][j][x][y-]),f[i][j-][x-][y]),f[i][j-][x][y-]);
// f[i][j][x][y]=max(f[i][j][x][y],f[i-1][j][x-1][y]+a[i][j]+a[x][y]);
// f[i][j][x][y]=max(f[i][j][x][y],f[i-1][j][x][y-1]+a[i][j]+a[x][y]);
// f[i][j][x][y]=max(f[i][j][x][y],f[i][j-1][x-1][y]+a[i][j]+a[x][y]);
// f[i][j][x][y]=max(f[i][j][x][y],f[i][j-1][x][y-1]+a[i][j]+a[x][y]);
if(i==x&&j==y)
f[i][j][x][y]-=a[i][j];
}
cout<<f[n][n][n][n]<<endl;
}
点击加号展开代码
然后讲思路:
1.如果先走第一个,第一个走完了再走第二个会有很多不可控因素(我就摔在这个坑上)
2.这题其实可以看作两个人同时走
每一回合有四种可能:
@1,两个同时向右走
@2,两个同时向下走
@3,第一个向右走,第二个向下走
@4,第一个向下走,第二个向右走
所以需要四个连环的for循环
用i,j表示第一个的坐标,x,y表示第二个的坐标
如果他们同时相遇,就相当于把一个格子的数字拿了两次,再减掉这一次就好了
也就是:
if(i==x&&j==y)
f[i][j][x][y]-=a[i][j];
这里的减就是数字拿多了,要扣的意思
然后递推式有两种写法:
@1:
f[i][j][x][y]=max(f[i][j][x][y],f[i-][j][x-][y]+a[i][j]+a[x][y]);
f[i][j][x][y]=max(f[i][j][x][y],f[i-][j][x][y-]+a[i][j]+a[x][y]);
f[i][j][x][y]=max(f[i][j][x][y],f[i][j-][x-][y]+a[i][j]+a[x][y]);
f[i][j][x][y]=max(f[i][j][x][y],f[i][j-][x][y-]+a[i][j]+a[x][y]);
第一种递推式的意思是考虑四种走法哪一种好,找出最大的,为每一格附上当前能有的最大数目,一直递推就是答案了
@2:
f[i][j][x][y]=a[i][j]+a[x][y]+max(max(max(f[i-][j][x-][y],f[i-][j][x][y-]),f[i][j-][x-][y]),f[i][j-][x][y-]);
第二种和第一种一个意思,写法不同而已
最后f[n][n][n][n]就是我们要的答案了
NOIP2000方格取数(洛谷,动态规划递推)的更多相关文章
- 棋盘DP三连——洛谷 P1004 方格取数 &&洛谷 P1006 传纸条 &&Codevs 2853 方格游戏
P1004 方格取数 题目描述 设有N $\times N$N×N的方格图(N $\le 9$)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A ...
- P1541 乌龟棋 题解(洛谷,动态规划递推)
题目:P1541 乌龟棋 感谢大神的题解(他的写的特别好) 写一下我对他的代码的理解吧(哎,蒟蒻就这能这样...) 代码: #include<bits/stdc++.h> #define ...
- P1004 方格取数-洛谷luogu-dp动态规划
题目描述 设有N \times NN×N的方格图(N \le 9)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A 0 0 0 0 0 0 0 0 ...
- 方格取数洛谷p1004
题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 人数字0.如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 0 13 0 0 6 0 ...
- AC日记——方格取数 洛谷 P1004
题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 人数字0.如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 0 13 0 0 6 0 ...
- P1060 开心的金明(洛谷,动态规划递推,01背包轻微变形题)
题目链接:P1060 开心的金明 基本思路: 基本上和01背包原题一样,不同点在于这里要的是最大重要度*价格总和,我们之前原题是 f[j]=max(f[j],f[j-v[i]]+p[i]); 那么这里 ...
- P1616 疯狂的采药(洛谷,动态规划递推,完全背包)
先上题目链接:P1616 疯狂的采药 然后放AC代码: #include<bits/stdc++.h> #define ll long long using namespace std; ...
- P1048 采药(洛谷,动态规划递推,01背包原题)
题目直接放链接 P1048 采药 这题只是01背包+背景故事而已 原题来的 PS:我写了一篇很详细的01背包说明,如果下面ac代码有看不懂的地方可以去看看 对01背包的分析与理解(图文) 下面上ac代 ...
- NOIP2000方格取数[DP]
题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 人数字0.如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 0 13 0 0 6 0 ...
随机推荐
- Ubuntu下Zabbix服务器监控工具部署
Ubuntu下Zabbix服务器监控工具部署 一 安装安装Apache.Mysql.Php.zabbix sudo apt-get update sudo apt-get install apache ...
- HDU5834Magic boy Bi Luo with his excited tree 树形dp
分析:典型的两遍dfs树形dp,先统计到子树的,再统计从祖先来的,dp[i][0]代表从从子树回来的最大值,dp[i][1]代表不回来,id[i]记录从i开始到哪不回来 吐槽:赛场上想到了状态,但是不 ...
- USACO Section1.1PROB Broken Necklace
有点麻烦的一道模拟(官方题解好像有复杂度为$O(n)$DP的姿势?,感觉好烦,以后再细看~ 在一些细节上调试了很久很久,囧RZ /* ID: jusonal1 PROG: beads LANG: C+ ...
- TFLearn 在给定模型精度时候提前终止训练
拿来主义:看我的代码,我是在模型acc和验证数据集val_acc都达到99.8%时候才终止训练. import numpy as np import tflearn from tflearn.laye ...
- 蓝书2.4 AC自动机
T1 玄武密码 bzoj 4327 题目大意: 一些字符串 求这些字符串的前缀在母串上的最大匹配长度是多少 思路: 对于所有串建立AC自动机 拿母串在自动机上匹配 对所有点打标记 以及对他们的fail ...
- php语法错误导致服务器错误(500)解决
PHP编码出错不提示,而是提示500错误,这对于开发来说,是很不方便的.下面讲解如何开启错误提示步骤: 1. 打开php.ini文件.以我的ubuntu为例,这个文件在: /etc/php5/apac ...
- Linux 下安装配置 JDK7(转载)
转自:http://dawndiy.com/archives/155/ 自从从Oracle收购Sun近三年来,已经有很多变化.早在8月,甲骨文将“Operating System Distributo ...
- MySQL5.7 windows二进制安装
200 ? "200px" : this.width)!important;} --> 介绍 1.下载解压 下载地址:http://dev.mysql.com/get/Dow ...
- bzoj 1734: [Usaco2005 feb]Aggressive cows 愤怒的牛【二分+贪心】
二分答案,贪心判定 #include<iostream> #include<cstdio> #include<algorithm> using namespace ...
- Akka源码分析-Cluster-Metrics
一个应用软件维护的后期一定是要做监控,akka也不例外,它提供了集群模式下的度量扩展插件. 其实如果读者读过前面的系列文章的话,应该是能够自己写一个这样的监控工具的.简单来说就是创建一个actor,它 ...