BSGS是一种解决一类专门的问题的解法,主要是解决已知A, B, C,求X使得A^x = B (mod p)这一类问题。

解法很简单,先设x = i*m-j(m=ceil(sqrt(p))),然后进行变形,得到ai*m = b*aj (mod p)。

先枚举j (范围0-m) ,将 b*aj  存入hash表。再枚举i (范围1-m) ,从hash表中寻找第一个满足ai*m = b*aj  (mod p)。

代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<ctime>
#include<queue>
#include<map>
#include<algorithm>
#include<cstring>
using namespace std;
#define duke(i,a,n) for(register int i = a;i <= n;i++)
#define lv(i,a,n) for(register int i = a;i >= n;i--)
#define clean(a) memset(a,0,sizeof(a))
const int INF = << ;
typedef long long ll;
typedef double db;
template <class T>
void read(T &x)
{
char c;
bool op = ;
while(c = getchar(), c < '' || c > '')
if(c == '-') op = ;
x = c - '';
while(c = getchar(), c >= '' && c <= '')
x = x * + c - '';
if(op) x = -x;
}
template <class T>
void write(T x)
{
if(x < ) putchar('-'), x = -x;
if(x >= ) write(x / );
putchar('' + x % );
}
map <ll,int> mp;
ll t,m,n,ans,now;
ll p,a,b;
bool flag;
ll qpow(ll a,ll b)
{
ll sum = ;
while(b)
{
if(b % == )
{
sum *= a;
}
a *= a;
sum %= p;
a %= p;
b >>= ;
}
return sum;
}
int main()
{
while(~scanf("%lld%lld%lld",&p,&a,&b))
{
if(a % p == )
{
printf("no solution\n");
continue;
}
mp.clear();
m = ceil(sqrt(p));
flag = false;
now = b % p;
mp[now] = ;
for(int i = ;i <= m;i++)
{
now = (now * a) % p;
mp[now] = i;
}
t = qpow(a,m);
now = ;
duke(i,,m)
{
now = (now * t) % p;
if(mp[now])
{
flag = true;
ans = i * m - mp[now];
printf("%lld\n",(ans % p + p) % p);
break;
}
}
if(!flag)
printf("no solution\n");
}
return ;
}

[模板] BSGS的更多相关文章

  1. [模板] BSGS/扩展BSGS

    简介 前置知识: 快速幂&&O(1)快速乘 [模板] 数学基础:快速幂/乘/逆元/exGCD/(ex)CRT/(ex)Lucas定理

  2. 模板BSGS(SDOI2011计算器) 模板EXBSGS

    BSGS和EXBSGS是OI中用于解决A^xΞB(mod C)的常用算法. 1.BSGS BSGS用于A,C互质的情况. 令m=sqrt(C),此时x可表示为i*m+j. 式中i和j都<=sqr ...

  3. 模板—BSGS

    #include<iostream> #include<cstdio> #include<cmath> #include<map> #define LL ...

  4. noip考前抱佛脚 数论小总结

    exCRT 求解韩信点兵问题,常见的就是合并不同\(mod\). 先mo一发高神的板子 for(R i=2;i<=n;++i){ ll Y1,Yi,lcm=Lcm(p[i],p[1]); exg ...

  5. POJ2417 Discrete Logging【BSGS】(模板题)

    <题目链接> 题目大意: P是素数,然后分别给你P,B,N三个数,然你求出满足这个式子的L的最小值 : BL== N (mod P). 解题分析: 这题是bsgs算法的模板题. #incl ...

  6. BSGS 模板

    模板如下: 扩展版本: 求解a^k=b %p 求k,最小的k一定小于p,否则会重复,否则无解 *********************** gcd(a,p)=1时 设k=mi+v m=sqrt(p) ...

  7. U9249 【模板】BSGS

    题目描述 给定a,b,p,求最小的非负整数x 满足a^x≡b(mod p) 若无解 请输出“orz” 输入输出格式 输入格式: 三个整数,分别为a,b,p 输出格式: 满足条件的非负整数x 输入输出样 ...

  8. Bsgs模板

    模板最主要的是自己看得舒服,不会给自己留隐患,调起来比较简单,板子有得是,最主要的是改造出适合你的那一套.                  ——mzz #include<bits/stdc++ ...

  9. 算法笔记--BSGS && exBSGS 模板

    https://www.cnblogs.com/sdzwyq/p/9900650.html 模板: unordered_map<int, int> mp; LL q_pow(LL n, L ...

随机推荐

  1. CAD得到所有实体方法(网页版)

    主要用到函数说明: IMxDrawSelectionSet::AllSelect 得到当前空间的所有实体.详细说明如下: 参数 说明 [in,defaultvalue(NULL)] IMxDrawRe ...

  2. IMDB电影排行爬取分析

    一.打开IMDB电影T250排行可以看见250条电影数据,电影名,评分等数据都可以看见 按F12进入开发者模式,找到这些数据对应的HTML网页结构,如下所示 可以看见里面有链接,点击链接可以进入电影详 ...

  3. Java基本输入输出

    Java基本输入输出 基本输入 基本输出 package com.ahabest.demo; public class Test { public static void main(String[] ...

  4. UVALIVE6886 Golf Bot (FFT)

    题意:打高尔夫 给你n个距离表示你一次可以把球打远的距离 然后对于m个询问 问能否在两杆内把球打进洞 题解:平方一下就好 注意一下x0的系数为1表示打一杆 才发现数组应该开MAXN * 4 之前写的题 ...

  5. 【转载】linux下的zookeeper启动

    zookeeper的安装目录:/usr/local/zookeeper-3.4.6/bin/zkServer.sh; 配置文件路径:../conf/zoo.cfg 端口 :2181: ZooKeepe ...

  6. TWaver GIS在电信中的使用

    GIS作为信息系统的重要组成部分,在电信行业中的应用由来已久.将GIS引入电信管理系统,GIS强大的功能就会得到充分的体现,GIS技术可以将各类电信信息系统以其特有的表现形有机整合在一起,并为真正做到 ...

  7. php第二十四节课

    三级联动 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3 ...

  8. 洛谷——P3811 【模板】乘法逆元

    P3811 [模板]乘法逆元 线性求逆元 逆元定义:若$a*x\equiv1 (\bmod {b})$,且$a$与$b$互质,那么我们就能定义: $x$为$a$的逆元,记为$a^{-1}$,所以我们也 ...

  9. [Luogu] P4366 [Code+#4]最短路

    题目背景 在北纬 91° ,有一个神奇的国度,叫做企鹅国.这里的企鹅也有自己发达的文明,称为企鹅文明.因为企鹅只有黑白两种颜色,所以他们的数学也是以二进制为基础发展的. 比如早在 1110100111 ...

  10. 爬虫之Requests库

    官方文档:http://cn.python-requests.org/zh_CN/latest/ 一.引子 import requests resp = requests.get("http ...