10003 Cutting Sticks(区间dp)
| Cutting Sticks |
You have to cut a wood stick into pieces. The most affordable company, The Analog Cutting Machinery, Inc. (ACM), charges money according to the length of the stick being cut. Their procedure of work requires that they only make one cut at a time.
It is easy to notice that different selections in the order of cutting can led to different prices. For example, consider a stick of length 10 meters that has to be cut at 2, 4 and 7 meters from one end. There are several choices. One can be cutting first at 2, then at 4, then at 7. This leads to a price of 10 + 8 + 6 = 24 because the first stick was of 10 meters, the resulting of 8 and the last one of 6. Another choice could be cutting at 4, then at 2, then at 7. This would lead to a price of 10 + 4 + 6 = 20, which is a better price.
Your boss trusts your computer abilities to find out the minimum cost for cutting a given stick.
Input
The input will consist of several input cases. The first line of each test case will contain a positive number l that represents the length of the stick to be cut. You can assume l < 1000. The next line will contain the number n ( n < 50) of cuts to be made.
The next line consists of n positive numbers ci ( 0 < ci < l) representing the places where the cuts have to be done, given in strictly increasing order.
An input case with l = 0 will represent the end of the input.
Output
You have to print the cost of the optimal solution of the cutting problem, that is the minimum cost of cutting the given stick. Format the output as shown below.
Sample Input
100
3
25 50 75
10
4
4 5 7 8
0
Sample Output
The minimum cutting is 200.
The minimum cutting is 22.
题意:给定一段len长的木棍,有n个切割点,每个切割点切掉的花费是当前切割点所在木棍的长度,求最少的花费。
思路:这题我是把每个木棍分成已经切割好的状态,在从切割好进行复原,复原过程中用区间dp的方法记录花费。
状态转移方程为dp[i][j] = min{dp[i][k] + dp[k + 1][j] + he(当前要复原的长度)}。
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std; int len, n, strick[55], i, j, k, l, sb, sbb, dp[55][55]; int min(int a, int b) {
return a < b ? a : b;
}
int main() {
while (~scanf("%d", &len) && len) {
sbb = 0;
memset(dp, 0, sizeof(dp));
scanf("%d", &n);
for (i = 1; i <= n; i ++) {
scanf("%d", &sb);
strick[i] = sb - sbb;
sbb = sb;
}
strick[++ n] = len - sb;
for (l = 1; l < n; l ++) {
for (i = 1; i <= n - l; i ++) {
j = i + l;
int sb = 999999999;
int he = 0;
for (k = i; k <= j; k ++)
he += strick[k];
for (k = i; k < j; k ++) {
sb = min(dp[i][k] + dp[k + 1][j] + he, sb);
}
dp[i][j] = sb;
}
}
printf("The minimum cutting is %d.\n", dp[1][n]);
}
return 0;
}
10003 Cutting Sticks(区间dp)的更多相关文章
- UVA 10003 Cutting Sticks 区间DP+记忆化搜索
UVA 10003 Cutting Sticks+区间DP 纵有疾风起 题目大意 有一个长为L的木棍,木棍中间有n个切点.每次切割的费用为当前木棍的长度.求切割木棍的最小费用 输入输出 第一行是木棍的 ...
- uva 10003 Cutting Sticks(区间DP)
题目连接:10003 - Cutting Sticks 题目大意:给出一个长l的木棍, 再给出n个要求切割的点,每次切割的代价是当前木棍的长度, 现在要求输出最小代价. 解题思路:区间DP, 每次查找 ...
- UVA 10003 Cutting Sticks(区间dp)
Description Cutting Sticks You have to cut a wood stick into pieces. The most affordable company ...
- uva 10003 Cutting Sticks 【区间dp】
题目:uva 10003 Cutting Sticks 题意:给出一根长度 l 的木棍,要截断从某些点,然后截断的花费是当前木棍的长度,求总的最小花费? 分析:典型的区间dp,事实上和石子归并是一样的 ...
- UVA 10003 Cutting Sticks
题意:在给出的n个结点处切断木棍,并且在切断木棍时木棍有多长就花费多长的代价,将所有结点切断,并且使代价最小. 思路:设DP[i][j]为,从i,j点切开的木材,完成切割需要的cost,显然对于所有D ...
- UVa 10003 - Cutting Sticks(区间DP)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- uva 10003 Cutting Sticks (区间dp)
本文出自 http://blog.csdn.net/shuangde800 题目链接: 打开 题目大意 一根长为l的木棍,上面有n个"切点",每个点的位置为c[i] 要按照一 ...
- UVA 10003 Cutting Sticks 切木棍 dp
题意:把一根木棍按给定的n个点切下去,每次切的花费为切的那段木棍的长度,求最小花费. 这题出在dp入门这边,但是我看完题后有强烈的既是感,这不是以前做过的石子合并的题目变形吗? 题目其实就是把n+1根 ...
- UVA - 10003 Cutting Sticks(切木棍)(dp)
题意:有一根长度为L(L<1000)的棍子,还有n(n < 50)个切割点的位置(按照从小到大排列).你的任务是在这些切割点的位置处把棍子切成n+1部分,使得总切割费用最小.每次切割的费用 ...
随机推荐
- 对于System.Net.Http的学习(一)——System.Net.Http 简介(转)
最新在学习System.Net.Http的知识,看到有篇文章写的十分详细,就想转过来,自己记录下.原地址是http://www.cnblogs.com/chillsrc/p/3439215.html? ...
- JavaSE学习总结第13天_API常用对象3
13.01 StringBuffer的概述 StringBuffer类概述:线程安全的可变字符序列.一个类似于 String 的字符串缓冲区,但不能修改.虽然在任意时间点上它都包含某种特定的字符序 ...
- GUI练习——列出指定目录内容
需求: 一个窗体里.在文本框输入路径后,摁回车键或者点击"转到"按钮后: 若路径合法,程序会自动在文本域里显示该路径下的文件目录:若路径非法,则弹出对话框,告之你路径非法.点击&q ...
- html回车事件
<!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <m ...
- sql server 修改表自增列的值
Create PROCEDURE [dbo].[SP_UpdateIdentityId] ( ) , @beforeId INT , @afterId INT ) AS BEGIN IF @befor ...
- oracle服务器和客户端字符集的查看和修改
一.什么是oracle字符集 Oracle字符集是一个字节数据的解释的符号集合,有大小之分,有相互的包容关系.ORACLE 支持国家语言的体系结构允许你使用本地化语言来存储,处理,检索数据.它使数据库 ...
- 如何使用沉浸式状态栏,让你的app风格更好看
大家都知道,传统的手机状态栏非黑即白,经常让整个app显得不是那么的好看,如何让状态栏的颜色跟你整个界面的颜色能够融为一体,这是我们一直想要的,现在给大家展示一下: 由图可见,第一张是没有使用沉浸式状 ...
- HDU 5823 color II(FWT)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5823 [题目大意] 定义一张无向图的价值:给每个节点染色使得每条边连接的两个节点颜色不相同的最少颜 ...
- java对象的比较分析
关于对象的比较我们可以通过以下三种手段来实现 一.利用"=="比较引用 Java中,当比较简单类型变量时用"==",只要两个简单类型值相等即返回ture,否则返 ...
- 使用LAMP创建基于wordpress的个从博客站点
參考: http://blog.csdn.net/ck_boss/article/details/27866117 一.mysql配置 1.安装mysql yum install mysql-serv ...