There are exactly ten ways of selecting three from five, 12345:

123, 124, 125, 134, 135, 145, 234, 235, 245, and 345

In combinatorics, we use the notation, 5C3 = 10.

In general,

It is not until n = 23, that a value exceeds one-million: 23C10 = 1144066.

How many, not necessarily distinct, values of  nCr, for 1  n  100, are greater than one-million?

题目大意:

从五个数12345中选出三个数一共有十种方法:

123, 124, 125, 134, 135, 145, 234, 235, 245, and 345

在组合数学中我们用5C3 = 10来表示.

n = 23时产生第一个超过一百万的数: 23C10 = 1144066.

对于nCr,  1  n  100,有多少超过100万的值?包括重复的在内。

//(Problem 53)Combinatoric selections
// Completed on Fri, 14 Feb 2014, 07:20
// Language: C11
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/
#include<stdio.h>
#include<math.h> long long combinatoric(int n, int r) //计算组合数的函数
{
int i;
long long s = ;
if(r > n / ) r = n - r;
for(i = n; i >= n - r + ; i--) {
s *= i;
}
for(i = ; i <= r; i++) {
s /= i;
}
return s;
} int main()
{
int i, j, s;
s = ;
for(i = ; i <= ; i++) {
j = ;
while(combinatoric(i, j) < ) j++;
if(i % ) {
s += (i / - j + ) * ; //利用组合数的对称性,分奇偶两种情况
} else {
s += (i / - j) * + ;
}
}
printf("%d\n", s);
return ;
}
Answer:
4075

(Problem 53)Combinatoric selections的更多相关文章

  1. (Problem 29)Distinct powers

    Consider all integer combinations ofabfor 2a5 and 2b5: 22=4, 23=8, 24=16, 25=32 32=9, 33=27, 34=81, ...

  2. (Problem 22)Names scores

    Using names.txt (right click and 'Save Link/Target As...'), a 46K text file containing over five-tho ...

  3. (Problem 73)Counting fractions in a range

    Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...

  4. (Problem 42)Coded triangle numbers

    The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...

  5. (Problem 41)Pandigital prime

    We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...

  6. (Problem 70)Totient permutation

    Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...

  7. (Problem 74)Digit factorial chains

    The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...

  8. (Problem 46)Goldbach's other conjecture

    It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...

  9. (Problem 72)Counting fractions

    Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...

随机推荐

  1. HDU 4715 Difference Between Primes (打表)

    Difference Between Primes Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/O ...

  2. 如何在eclipse中修改jsp默认编码

    在使用eclipse编程的时候,很多默认的编码都是iso-8859-1我们经常使用的,在eclipse中怎么修改jsp页面的默认编码呢. 第一步:打开eclipse,找到windows-->pr ...

  3. 编写可维护的JS 05

    5.UI层的松耦合 松耦合定义 每个组件尽量独立,修改一个不影响其他的组件 将Js从css中抽离 不要使用css表达式,因为浏览器会以高频率重复计算css表达式,严重影响性能,IE9不支持表达式 将C ...

  4. 转载:JS触发服务器控件的单击事件

    原文地址:http://blog.csdn.net/joyhen/article/details/8485321 <script src="../Js/jquery-1.4.2.min ...

  5. 用for循环遍历DataTable中的数据

    for (int i = 0; i < dataTable.Rows.Count; i++) { for (int j = 0; j < dataTable.Columns.Count;  ...

  6. 思考----拒绝单纯copy

    工作4个多月以来感触最深的是: 做事情的时候遇到不会的可以上网查或者问别人,但是获取到的知识不能只是单纯的copy过来使用达到要求就ok, 更重要的是事后等有空了一定要仔细研究学习,使知识网络完整,这 ...

  7. nginx gzip on

    # Gzip settings. gzip on; gzip_http_version 1.0;默认值是1.1 gzip_comp_level ; #压缩级别,1压缩比最小处理速度最快,9压缩比最大但 ...

  8. jQ的自定义插件

    此文运用的是优雅的Markdown而书 项目中写js时,有很多时候有需要重复利用的东西,我们可以给它们写成一个插件的形式,这样阅读性和适用性都会大大提高.最近抽个时间,好一番的研究了下 Jcrop 的 ...

  9. Android WindowManager 小结

    Android---系统服务之 ---WindowManager WindowManager是Android中一个重要的服务(Service ).WindowManager Service 是全局的, ...

  10. java.util.MissingResourceException解决策

    .properties文件放到当前目录下会报错: 需要放到src文件夹下: