(Problem 53)Combinatoric selections
There are exactly ten ways of selecting three from five, 12345:
123, 124, 125, 134, 135, 145, 234, 235, 245, and 345
In combinatorics, we use the notation, 5C3 = 10.
In general,

It is not until n = 23, that a value exceeds one-million: 23C10 = 1144066.
How many, not necessarily distinct, values of nCr, for 1
n
100, are greater than one-million?
题目大意:
从五个数12345中选出三个数一共有十种方法:
123, 124, 125, 134, 135, 145, 234, 235, 245, and 345
在组合数学中我们用5C3 = 10来表示.
n = 23时产生第一个超过一百万的数: 23C10 = 1144066.
对于nCr, 1
n
100,有多少超过100万的值?包括重复的在内。
//(Problem 53)Combinatoric selections
// Completed on Fri, 14 Feb 2014, 07:20
// Language: C11
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/
#include<stdio.h>
#include<math.h> long long combinatoric(int n, int r) //计算组合数的函数
{
int i;
long long s = ;
if(r > n / ) r = n - r;
for(i = n; i >= n - r + ; i--) {
s *= i;
}
for(i = ; i <= r; i++) {
s /= i;
}
return s;
} int main()
{
int i, j, s;
s = ;
for(i = ; i <= ; i++) {
j = ;
while(combinatoric(i, j) < ) j++;
if(i % ) {
s += (i / - j + ) * ; //利用组合数的对称性,分奇偶两种情况
} else {
s += (i / - j) * + ;
}
}
printf("%d\n", s);
return ;
}
|
Answer:
|
4075 |
(Problem 53)Combinatoric selections的更多相关文章
- (Problem 29)Distinct powers
Consider all integer combinations ofabfor 2a5 and 2b5: 22=4, 23=8, 24=16, 25=32 32=9, 33=27, 34=81, ...
- (Problem 22)Names scores
Using names.txt (right click and 'Save Link/Target As...'), a 46K text file containing over five-tho ...
- (Problem 73)Counting fractions in a range
Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...
- (Problem 42)Coded triangle numbers
The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...
- (Problem 41)Pandigital prime
We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...
- (Problem 70)Totient permutation
Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...
- (Problem 74)Digit factorial chains
The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...
- (Problem 46)Goldbach's other conjecture
It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...
- (Problem 72)Counting fractions
Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...
随机推荐
- Sublime Text 3:3114的安装(目前最新),插件emmet的安装
随便一些好了. 直接英文版吧,建议不要找中文版,学习英语不是? https://www.sublimetext.com/3 下载 https://github.com/wbond/package_ ...
- Deep Learning(深度学习)学习笔记整理系列之(三)
Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04 ...
- oracle归档日志
前几天因为导入大的东西,弄得很久都没动静,一看最后才发现是归档满了.但是很多的命令还是很是很不熟悉,所以看了下,百度了下.整理下这个. 1.查看归档日志大小及使用情况 select * from v$ ...
- 线性插值(linear interpolation)
线性插值通常用于:使用离散的样本来重建连续的信号.在计算机图形学中,这些样本可能是纹理.动画关键帧等. template <class T> T Lerp(T& a, T& ...
- realloc,c语言
realloc #include <stdlib.h> main() { char* ptr=NULL; char* ptr2=NULL; ptr = malloc(); printf(& ...
- [C#技术参考]Socket传输结构数据
最近在做一个机器人项目,要实时的接收机器人传回的坐标信息,并在客户端显示当前的地图和机器人的位置.当然坐标的回传是用的Socket,用的是C++的结构体表示的坐标信息.但是C#不能像C++那样很eas ...
- HDU2955-Robberies
描述: The aspiring Roy the Robber has seen a lot of American movies, and knows that the bad guys usual ...
- tomcat无法正常启动的一个原因
简要报错信息: java.lang.IllegalArgumentException: Document base E:\apache-tomcat-7.0.65\webapps\springmvc0 ...
- nodejs安装指定版本
由于express有各种不同的版本,不同的版本开发方式有所不同,如果想安装指定版本可以选择全局安装指定版本: 安装步骤如下: (1) 安装2.5.8版本的express的方法: C:\Users\Li ...
- web编程速度大比拼(nodejs go python)(非专业对比)
C10K问题的解决,涌现出一大批新框架,或者新语言,那么问题来了:到底谁最快呢?非专业程序猿来个非专业对比. 比较程序:输出Hello World! 测试程序:siege –c 100 –r 100 ...