(Problem 53)Combinatoric selections
There are exactly ten ways of selecting three from five, 12345:
123, 124, 125, 134, 135, 145, 234, 235, 245, and 345
In combinatorics, we use the notation, 5C3 = 10.
In general,

It is not until n = 23, that a value exceeds one-million: 23C10 = 1144066.
How many, not necessarily distinct, values of nCr, for 1
n
100, are greater than one-million?
题目大意:
从五个数12345中选出三个数一共有十种方法:
123, 124, 125, 134, 135, 145, 234, 235, 245, and 345
在组合数学中我们用5C3 = 10来表示.
n = 23时产生第一个超过一百万的数: 23C10 = 1144066.
对于nCr, 1
n
100,有多少超过100万的值?包括重复的在内。
//(Problem 53)Combinatoric selections
// Completed on Fri, 14 Feb 2014, 07:20
// Language: C11
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/
#include<stdio.h>
#include<math.h> long long combinatoric(int n, int r) //计算组合数的函数
{
int i;
long long s = ;
if(r > n / ) r = n - r;
for(i = n; i >= n - r + ; i--) {
s *= i;
}
for(i = ; i <= r; i++) {
s /= i;
}
return s;
} int main()
{
int i, j, s;
s = ;
for(i = ; i <= ; i++) {
j = ;
while(combinatoric(i, j) < ) j++;
if(i % ) {
s += (i / - j + ) * ; //利用组合数的对称性,分奇偶两种情况
} else {
s += (i / - j) * + ;
}
}
printf("%d\n", s);
return ;
}
|
Answer:
|
4075 |
(Problem 53)Combinatoric selections的更多相关文章
- (Problem 29)Distinct powers
Consider all integer combinations ofabfor 2a5 and 2b5: 22=4, 23=8, 24=16, 25=32 32=9, 33=27, 34=81, ...
- (Problem 22)Names scores
Using names.txt (right click and 'Save Link/Target As...'), a 46K text file containing over five-tho ...
- (Problem 73)Counting fractions in a range
Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...
- (Problem 42)Coded triangle numbers
The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...
- (Problem 41)Pandigital prime
We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...
- (Problem 70)Totient permutation
Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...
- (Problem 74)Digit factorial chains
The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...
- (Problem 46)Goldbach's other conjecture
It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...
- (Problem 72)Counting fractions
Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...
随机推荐
- HDU 4715 Difference Between Primes (打表)
Difference Between Primes Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/O ...
- 如何在eclipse中修改jsp默认编码
在使用eclipse编程的时候,很多默认的编码都是iso-8859-1我们经常使用的,在eclipse中怎么修改jsp页面的默认编码呢. 第一步:打开eclipse,找到windows-->pr ...
- 编写可维护的JS 05
5.UI层的松耦合 松耦合定义 每个组件尽量独立,修改一个不影响其他的组件 将Js从css中抽离 不要使用css表达式,因为浏览器会以高频率重复计算css表达式,严重影响性能,IE9不支持表达式 将C ...
- 转载:JS触发服务器控件的单击事件
原文地址:http://blog.csdn.net/joyhen/article/details/8485321 <script src="../Js/jquery-1.4.2.min ...
- 用for循环遍历DataTable中的数据
for (int i = 0; i < dataTable.Rows.Count; i++) { for (int j = 0; j < dataTable.Columns.Count; ...
- 思考----拒绝单纯copy
工作4个多月以来感触最深的是: 做事情的时候遇到不会的可以上网查或者问别人,但是获取到的知识不能只是单纯的copy过来使用达到要求就ok, 更重要的是事后等有空了一定要仔细研究学习,使知识网络完整,这 ...
- nginx gzip on
# Gzip settings. gzip on; gzip_http_version 1.0;默认值是1.1 gzip_comp_level ; #压缩级别,1压缩比最小处理速度最快,9压缩比最大但 ...
- jQ的自定义插件
此文运用的是优雅的Markdown而书 项目中写js时,有很多时候有需要重复利用的东西,我们可以给它们写成一个插件的形式,这样阅读性和适用性都会大大提高.最近抽个时间,好一番的研究了下 Jcrop 的 ...
- Android WindowManager 小结
Android---系统服务之 ---WindowManager WindowManager是Android中一个重要的服务(Service ).WindowManager Service 是全局的, ...
- java.util.MissingResourceException解决策
.properties文件放到当前目录下会报错: 需要放到src文件夹下: