RBF network
1.radial basis function
RBF表示某种距离,$\mu_m$为中心点,相当于将点$x$到中心点的某种距离作为特征转换
Output方法可以根据需求任意选取(比如使用SVM,logistic regression等)
关键在于:中心点选取,距离函数选择


2.使用kmean选取中心点,后使用logistic regression
import numpy as np
from sklearn.cluster import KMeans
from sklearn.linear_model import LogisticRegression
from matplotlib import pyplot as plt
from sklearn import cross_validation
from sklearn.base import BaseEstimator class KMeansRBF:
def __init__(self,n_clusters,beta,C):
self.n_clusters=n_clusters
self.beta=beta
self.C=C def fit(self,X,y):
km = KMeans(n_clusters=self.n_clusters);
km.fit(X)
ct = km.cluster_centers_
self.ct = ct
G = self._nFeature(ct, X)
lg=LogisticRegression(C=self.C)
lg.fit(G,y)
self.lg=lg def predict(self,X):
G = self._nFeature(self.ct, X)
return self.lg.predict(G) def _nFeature(self,cts,X):
G = np.zeros((X.shape[0],cts.shape[0]))
for xi,x in enumerate(X):
for ci,c in enumerate(cts):
G[xi,ci] = self._kernal(x, c)
return G def _kernal(self,x1,x2):
x = x1-x2;
return np.exp(-self.beta*np.dot(np.transpose(x),x)) def predict_proba(self,X):
G = self._nFeature(self.ct, X)
return self.lg.predict_proba(G) def get_params(self, deep=True):
return {'n_clusters':self.n_clusters,'beta':self.beta,'C':self.C} def set_params(self, **parameters):
for parameter, value in parameters.items():
setattr(self, parameter, value) def plot(self,X,y):
pos = np.where(y==1)
neg = np.where(y==-1) x1 = X[pos[0],:]
x2 = X[neg[0],:] plt.figure()
plt.plot(x1[:,0],x1[:,1],'o')
plt.plot(x2[:,0],x2[:,1],'o')
plt.plot(self.ct[0,0],self.ct[0,1],'ro')
plt.plot(self.ct[1,0],self.ct[1,1],'ro') xmax = np.max(X[:,0])+5
xmin = np.min(X[:,0])-5
ymax = np.max(X[:,1])+5
ymin = np.min(X[:,1])-5 numx = int((xmax-xmin)*10)
numy = int((ymax-ymin)*10)
total = numx*numy;
lx = np.linspace(xmin,xmax,numx)
ly = np.linspace(ymin,ymax,numy)
mgrid = np.meshgrid(lx,ly)
px = np.hstack((mgrid[0].reshape(total,1),mgrid[1].reshape(total,1)))
pre=self.predict_proba(px)
ind = np.where(abs(pre[:,1]-pre[:,0])<0.01) px=px[ind]
plt.plot(px[:,0],px[:,1],'yo')
plt.show()
if __name__ == '__main__':
x1=np.random.normal(10, 6.0, (80,2))
x2=np.random.normal(-10, 6.0, (80,2)) X = np.vstack((x1,x2))
y = np.zeros((160,1))
y[range(0,80),0]=y[range(0,80),0]+1
y[range(80,160),0]=y[range(80,160),0]-1
y=np.ravel(y) betas = np.linspace(0.001,0.1,100)
k = range(100)
score = np.zeros((100,1),'float') bestbeta = 0.001;
maxscore = -1;
for i,beta in enumerate(betas):
krbf = KMeansRBF(2,beta,1)
scores =cross_validation.cross_val_score(krbf,X,y,scoring="accuracy",cv=5)
score[i,0]=scores.mean()
if score[i,0]>maxscore:
maxscore=score[i,0]
bestbeta = beta plt.figure()
plt.plot(k,score,'b-')
plt.show()
print bestbeta;
krbf = KMeansRBF(2,bestbeta,1)
krbf.fit(X, y)
krbf.plot(X,y)
3.结果
gussian中beta的値设置非常关键
由于指数函数增加得很快,所以大的beta値,意味着只有和中心点很近的点才能被判定和中心点为同一类
| beta = 1 | beta = 0.001 |
![]() |
![]() |
RBF network的更多相关文章
- 径向基网络(RBF network)
来源:http://blog.csdn.net/zouxy09/article/details/13297881 1.径向基函数 径向基函数(Radical Basis Function,RBF)方法 ...
- 机器学习技法:14 Radial Basis Function Network
Roadmap RBF Network Hypothesis RBF Network Learning k-Means Algorithm k-Means and RBF Network in Act ...
- 机器学习技法笔记:14 Radial Basis Function Network
Roadmap RBF Network Hypothesis RBF Network Learning k-Means Algorithm k-Means and RBF Network in Act ...
- Coursera台大机器学习技法课程笔记14-Radial Basis Function Network
将Radial Basis Function与Network相结合.实际上衡量两个点的相似性:距离越近,值越大. 将神经元换为与距离有关的函数,就是RBF Network: 可以用kernel和RBF ...
- RBF神经网络和BP神经网络的关系
作者:李瞬生链接:https://www.zhihu.com/question/44328472/answer/128973724来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注 ...
- 【Radial Basis Function Network】林轩田机器学习技法
这节课主要讲述了RBF这类的神经网络+Kmeans聚类算法,以及二者的结合使用. 首先回归的了Gaussian SVM这个模型: 其中的Gaussian kernel又叫做Radial Basis F ...
- RBF网络——核心思想:把向量从低维m映射到高维P,低维线性不可分的情况到高维就线性可分了
RBF网络能够逼近任意的非线性函数,可以处理系统内的难以解析的规律性,具有良好的泛化能力,并有很快的学习收敛速度,已成功应用于非线性函数逼近.时间序列分析.数据分类.模式识别.信息处理.图像处理. ...
- theano中的concolutional_mlp.py学习
(1) evaluate _lenet5中的导入数据部分 # 导入数据集,该函数定义在logistic_sgd中,返回的是一个list datasets = load_data(dataset) # ...
- 全连接BP神经网络
前馈神经网络 前馈神经网络(feedforward neural network)是最朴素的神经网络,通常我们所说的前馈神经网络有两种,一种叫反向传播网络(Back propagation Netwo ...
随机推荐
- 小巧数据库 Derby 使用攻略
阅读目录 1. Derby 介绍 2. 稍稍配置下环境变量 3. Derby 操作和 Java 访问 回到顶部 1. Derby 介绍 将目光放在小 Derby 的原因是纯绿色.轻巧.内存占用小,分分 ...
- 如何让FPGA中的SPI与其他模块互动起来
在上一篇文章<FPGA的SPI从机模块实现>中,已经实现了SPI的从机模块,如何通过SPI总线与FPGA内部其他模块进行通信,是本文的主要讨论内容. 一. 新建FPGA内部DAC控制模块 ...
- Python-求助 SAE 如何使用第三方库? - 德问:编程社交问答
Python-求助 SAE 如何使用第三方库? - 德问:编程社交问答 求助 SAE 如何使用第三方库?
- SQL中如何使用UPDATE语句进行联表更新(转)
在本例中: 我们要用表member中的name,age字段数据去更新user中的同字段名的数据,条件是当user 中的id字段值与member中的id字段值相等时进行更新. SQL Server语法: ...
- hdu 4627 The Unsolvable Problem(暴力的搜索)
Problem Description There are many unsolvable problem in the world.It could be about one or about ze ...
- jquery第三期:js与jquery对象转换
我们开始进入jquery的学习了,jquery的学习就不那么中规中矩了,我们来看一个和javascript有所区别的地方. <!DOCTYPE html PUBLIC "-//W3C/ ...
- 解决的方法:warning: Clock skew detected. Your build may be incomplete.
因为时钟同步问题.出现 warning: Clock skew detected. Your build may be incomplete.这种警告, 解决的方法: find . -type f ...
- UIScrollView 与 UIPageView 的联合使用
@interface ViewController : UIViewController<UIScrollViewDelegate> { UIScrollView * scrollV ...
- Flash Recovery Area 的备份
Flash Recovery Area 的备份 备份命令是Flash recovery Area,该命令是Oracle 10g以后才有的.10g引进了flash recovery area,同时在rm ...
- C#核编之System.Console类
顾名思义,Console类封装了基于控制台的输入输出和错误流的操作,下面列举一些System.Console类常用的成员的,这些成员能为简单的命令行程序添加一些"情趣",例如改变背 ...

