---恢复内容开始---

算法步骤:

1.计算用户相似度

2.对于特定用户,选出k个最相似的用户,将这些用户评价过的前k好的物品推荐给该用户
 
用户相似度 度量:
其中|N(u)|表示用户u评价过的物品的数量,|N(i)|为物品i的流行度,即物品i被多少用户评价过
这里物品流行度越高,它在相似度的度量上作用越小(两人都买了《新华字典》,并不是因为喜好)
 
实现:
1.先获取每个物品 对应的 对其进行评价的用户的列表 iu
  如:商品A   ---  [用户2,用户3,用户4]
    商品B   ---  [用户1,用户5,用户2]
def item_user(self,data):
iu = dict()
groups = data.groupby([1])
for item,group in groups:
iu[item]=set(group.ix[:,0]) return iu
2.获取每个用户 对应的 评价过的物品的列表  ui
    如:用户2  ---  [商品A,商品B]
def user_item(self,data):
ui = dict()
groups = data.groupby([0])
for item,group in groups:
ui[item]=set(group.ix[:,1]) return ui

3.遍历列表iu上的每一个商品,计算相似度

   比如对商品A,则用户2和用户3之间,相似度加   1/log(1+3)/sqrt(2*1)
   --3是商品A的流行度(3个用户评价过它),2*1表示用户2评价过的商品数乘以用户3评价过的商品数
def similarityMatrix(self):
matrix=dict()
N = dict()
for item,users in self.iu.items():
add = 1.0/(1+math.log(len(users)))
for v in users:
if v not in N:
N[v] = 1
else:
N[v] += 1 for u in users:
if v==u:
continue
if v not in matrix:
matrix[v] = dict(); if u not in matrix[v]:
matrix[v][u] = 0; matrix[v][u]+=add; for v in matrix.keys():
for u in matrix[v].keys():
matrix[v][u] /= math.sqrt(N[u]*N[v])
matrix[v] = sorted(matrix[v].items(),lambda x,y:cmp(x[1],y[1]),reverse=True); return matrix

4.推荐

def getRecommend(self,user):
userItem=self.ui[user]
simiusers=self.simiMatrix[user]
rank = dict()
for i in range(len(simiusers)):
if i>=self.k:
break
for item in self.ui[simiusers[i][0]]:
if item in userItem:
continue
if item not in rank:
rank[item]=0
rank[item]+=simiusers[i][1]*1
rank = sorted(rank.items(),lambda x,y:cmp(x[1],y[1]),reverse=True)[0:self.k];
return [ele[0] for ele in rank]

---恢复内容结束---

user Collaborative Filtering的更多相关文章

  1. Collaborative filtering

        Collaborative filtering, 即协同过滤,是一种新颖的技术.最早于1989年就提出来了,直到21世纪才得到产业性的应用.应用上的代表在国外有Amazon.com,Last. ...

  2. 协同滤波 Collaborative filtering 《推荐系统实践》 第二章

    利用用户行为数据 简介: 用户在网站上最简单存在形式就是日志. 原始日志(raw log)------>会话日志(session log)-->展示日志或点击日志 用户行一般分为两种: 1 ...

  3. mahout算法源码分析之Collaborative Filtering with ALS-WR (四)评价和推荐

    Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 首先来总结一下 mahout算法源码分析之Collaborative Filtering with AL ...

  4. mahout算法源码分析之Collaborative Filtering with ALS-WR拓展篇

    Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. 额,好吧,心头的一块石头总算是放下了.关于Collaborative Filtering with AL ...

  5. mahout算法源码分析之Collaborative Filtering with ALS-WR 并行思路

    Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit. mahout算法源码分析之Collaborative Filtering with ALS-WR 这个算 ...

  6. 基于物品的协同过滤推荐算法——读“Item-Based Collaborative Filtering Recommendation Algorithms” .

    ligh@local-host$ ssh-copy-id -i ~/.ssh/id_rsa.pub root@192.168.0.3 基于物品的协同过滤推荐算法--读"Item-Based ...

  7. 【RS】Sparse Probabilistic Matrix Factorization by Laplace Distribution for Collaborative Filtering - 基于拉普拉斯分布的稀疏概率矩阵分解协同过滤

    [论文标题]Sparse Probabilistic Matrix Factorization by Laplace Distribution for Collaborative Filtering  ...

  8. 【RS】Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model - 当因式分解遇上邻域:多层面协同过滤模型

    [论文标题]Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model   (35th-ICM ...

  9. 亚马逊 协同过滤算法 Collaborative filtering

    这节课时郭强的三维课.他讲的是MAYA和max .自己对这个也不怎么的感兴趣.而且这个课感觉属于数字媒体.自己对游戏,动画,这些东西一点都不兴趣,比如大一的时候刚开学的时候,张瑞的数字媒体的导论课.还 ...

  10. collaborative filtering协同过滤

    每次我想看电影的时候,都会去问我的朋友,小健.一般他推荐的电影,我都比较喜欢.显然不是所有人都有小健这样的能力.因为我碰巧和小健有类似的品味. 这个生活中的经验,实际上有着广泛的用途. 当系统需要为某 ...

随机推荐

  1. C# Chart 折线图 多条数据展示

    private void btn_Click(object sender, EventArgs e) { DBHelper db = new DBHelper(); DataSet ds = db.G ...

  2. FPGA的LE数与门数的关系(转)

    一般而言FPGA等效门数的计算方法有两种 一是把FPGA基本单元(如LUT+FF,ESB/BRAM)和实现相同功能的标准门阵列比较,门阵列中包含的门数即为该FPGA基本单元的等效门数,然后乘以基本单元 ...

  3. Delphi获取系统服务描述信息

    program Project1; {$APPTYPE CONSOLE} uses Windows, WinSvc; type SERVICE_DESCRIPTION = packed record ...

  4. HttpClient post 请求实例

    所需jar包: commons-codec-1.3.jar commons-httpclient-3.0.jar commons-logging-1.1.1.jar /** * */ package ...

  5. registered the JBDC driver [oracle.jdbc.OracleDriver] but failed to unregister it when the web application was stopped. (转)

    最近项目中遇见一问题,在开发环境没有问题的代码,到了生产环境就会报如下错误:   严重: A web application registered the JBDC driver [oracle.jd ...

  6. android 管理Bitmap内存 - 开发文档翻译

    由于本人英文能力实在有限,不足之初敬请谅解 本博客只要没有注明“转”,那么均为原创,转贴请注明本博客链接链接   Managing Bitmap Memory 管理Bitmap内存 In additi ...

  7. 【转】关于Activity和Task的设计思路和方法

    Activity和Task是Android Application Framework架构中最基础的应用,开发者必须清楚它们的用法和一些开发技巧.本文用大量的篇幅并通过引用实例的方式一步步深入全面讲解 ...

  8. 【LeetCode练习题】Merge k Sorted Lists

    Merge k Sorted Lists Merge k sorted linked lists and return it as one sorted list. Analyze and descr ...

  9. ls命令 ls -trl

    每天一个linux命令(1):ls命令   ls命令是linux下最常用的命令.ls命令就是list的缩写缺省下ls用来打印出当前目录的清单如果ls指定其他目录那么就会显示指定目录里的文件及文件 ...

  10. IE8对css文件的限制

    很多人在写css时,时常把很多css样式放到一个文件中.也有些框架在上线后,能对很多css文件进行合并.这样能减少对服务器的请求次数,从而加快服务器的响应速度.在IE8中,当css的规则个数大于409 ...