Stacking Boxes 

Background

Some concepts in Mathematics and Computer Science are simple in one or two dimensions but become more complex when extended to arbitrary dimensions. Consider solving differential equations in several dimensions and analyzing the topology of an n-dimensional hypercube. The former is much more complicated than its one dimensional relative while the latter bears a remarkable resemblance to its ``lower-class'' cousin.

The Problem

Consider an n-dimensional ``box'' given by its dimensions. In two dimensions the box (2,3) might represent a box with length 2 units and width 3 units. In three dimensions the box (4,8,9) can represent a box (length, width, and height). In 6 dimensions it is, perhaps, unclear what the box (4,5,6,7,8,9) represents; but we can analyze properties of the box such as the sum of its dimensions.

In this problem you will analyze a property of a group of n-dimensional boxes. You are to determine the longest nesting string of boxes, that is a sequence of boxes  such that each box  nests in box (  .

A box D = (  ) nests in a box E = (  ) if there is some rearrangement of the  such that when rearranged each dimension is less than the corresponding dimension in box E. This loosely corresponds to turning box D to see if it will fit in box E. However, since any rearrangement suffices, box D can be contorted, not just turned (see examples below).

For example, the box D = (2,6) nests in the box E = (7,3) since D can be rearranged as (6,2) so that each dimension is less than the corresponding dimension in E. The box D = (9,5,7,3) does NOT nest in the box E = (2,10,6,8) since no rearrangement of D results in a box that satisfies the nesting property, but F = (9,5,7,1) does nest in box E since F can be rearranged as (1,9,5,7) which nests in E.

Formally, we define nesting as follows: box D = (  ) nests in box E = (  ) if there is a permutation  of  such that (  ) ``fits'' in (  ) i.e., if for all  .

The Input

The input consists of a series of box sequences. Each box sequence begins with a line consisting of the the number of boxes k in the sequence followed by the dimensionality of the boxes, n (on the same line.)

This line is followed by k lines, one line per box with the n measurements of each box on one line separated by one or more spaces. The  line in the sequence (  ) gives the measurements for the  box.

There may be several box sequences in the input file. Your program should process all of them and determine, for each sequence, which of the k boxes determine the longest nesting string and the length of that nesting string (the number of boxes in the string).

In this problem the maximum dimensionality is 10 and the minimum dimensionality is 1. The maximum number of boxes in a sequence is 30.

The Output

For each box sequence in the input file, output the length of the longest nesting string on one line followed on the next line by a list of the boxes that comprise this string in order. The ``smallest'' or ``innermost'' box of the nesting string should be listed first, the next box (if there is one) should be listed second, etc.

The boxes should be numbered according to the order in which they appeared in the input file (first box is box 1, etc.).

If there is more than one longest nesting string then any one of them can be output.

Sample Input

5 2
3 7
8 10
5 2
9 11
21 18
8 6
5 2 20 1 30 10
23 15 7 9 11 3
40 50 34 24 14 4
9 10 11 12 13 14
31 4 18 8 27 17
44 32 13 19 41 19
1 2 3 4 5 6
80 37 47 18 21 9

Sample Output

5
3 1 2 4 5
4
7 2 5 6

题意:给定n个m维的箱子。问最多能套几层

思路:我用的是记忆化搜索。。用一个dp数组来记录套了几个。如果搜索过程中小于的直接不考虑

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std; int n, m, i, j, Max, dp[35], way[35], save[35];
struct Box {
int d[15];
} b[35]; int judge(int small, int big) {
for (int i = 0; i < m; i ++)
if (b[small].d[i] >= b[big].d[i])
return 0;
return 1;
} void dfs(int now, int num) {
for (int i = 1; i <= n; i ++) {
if (i != now && judge(now, i) && dp[i] < num + 1) {//dp[i] < num + 1 是记忆化搜索的关键。
dp[i] = num + 1;
save[num] = i;
dfs(i, num + 1);
}
}
if (Max < num) {
Max = num;
for (int j = 0; j < num; j ++)
way[j] = save[j];
}
} int main() {
while (~scanf("%d%d", &n, &m)) {
Max = 0;
memset(dp, 0, sizeof(dp));
for (i = 1; i <= n; i ++) {
for (j = 0; j < m; j ++) {
scanf("%d", &b[i].d[j]);
}
sort(b[i].d, b[i].d + m);
}
dfs(0, 0);
printf("%d\n", Max);
for (i = 0; i < Max - 1; i ++)
printf("%d ", way[i]);
printf("%d\n", way[Max - 1]);
}
return 0;
}

UVA 103 Stacking Boxes (dp + DAG上的最长路径 + 记忆化搜索)的更多相关文章

  1. uva 103 Stacking Boxes(DAG)

    题目连接:103 - Stacking Boxes 题目大意:有n个w维立体, 输出立体互相嵌套的层数的最大值, 并输出嵌套方式, 可嵌套的要求是外层立体的w条边可以分别对应大于内层立体. 解题思路: ...

  2. UVa 103 Stacking Boxes --- DAG上的动态规划

    UVa 103 题目大意:给定n个箱子,每个箱子有m个维度, 一个箱子可以嵌套在另一个箱子中当且仅当该箱子的所有的维度大小全部小于另一个箱子的相应维度, (注意箱子可以旋转,即箱子维度可以互换),求最 ...

  3. poj 3249 Test for Job (DAG最长路 记忆化搜索解决)

    Test for Job Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 8990   Accepted: 2004 Desc ...

  4. UVa 103 - Stacking Boxes(dp求解)

    题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...

  5. UVa 103 - Stacking Boxes

    题目大意:矩阵嵌套,不过维数是多维的.有两个个k维的盒子A(a1, a1...ak), B(b1, b2...bk),若能找到(a1...ak)的一个排列使得ai < bi,则盒子A可嵌套在盒子 ...

  6. UVa 103 - Stacking Boxes (LIS,打印路径)

    链接:UVa 103 题意:给n维图形,它们的边长是{d1,d2,d3...dn},  对于两个n维图形,求满足当中一个的全部边长 依照随意顺序都一一相应小于还有一个的边长,这种最长序列的个数,而且打 ...

  7. UVA 103 Stacking Boxes n维最长上升子序列

    题目链接:UVA - 103 题意:现有k个箱子,每个箱子可以用n维向量表示.如果一个箱子的n维向量均比另一个箱子的n维向量大,那么它们可以套接在一起,每个箱子的n维向量可以互相交换值,如箱子(2,6 ...

  8. uva 103 Stacking Boxes(最长上升子序列)

    Description    Stacking Boxes  Background Some concepts in Mathematics and Computer Science are simp ...

  9. UVA 103 Stacking Boxes 套箱子 DAG最长路 dp记忆化搜索

    题意:给出几个多维的箱子,如果箱子的每一边都小于另一个箱子的对应边,那就称这个箱子小于另一个箱子,然后要求能够套出的最多的箱子. 要注意的是关系图的构建,对箱子的边排序,如果分别都小于另一个箱子就说明 ...

随机推荐

  1. 汉诺塔 python版

    汉诺塔问题:如果将n个盘子(由小到大)从a通过b,搬到c,搬运过程中不能出现小盘子在大盘子下面的情况. 思路分析:假设前要移动第100个盘子,分两步走,移动第99个:再移动第100个:而要移动第99个 ...

  2. iOS 10中如何搭建一个语音转文字框架

    在2016WWDC大会上,Apple公司介绍了一个很好的语音识别的API,那就是Speech framework.事实上,这个Speech Kit就是Siri用来做语音识别的框架.如今已经有一些可用的 ...

  3. [NOIP2012提高组] CODEVS 1200 同余方程(扩展欧几里德算法)

    数论题..所有数论对我来说都很恶心..不想再说什么了.. ------------------------------------------------ #include<iostream&g ...

  4. 虚拟机ping不通主机

    centos ping不通主机 首先检查网络设备 ifconfig -a 如果有eth0 , 又存在 eth1 . 那么service eth1 stop  然后在ping主机.(以上前提是网络地址设 ...

  5. 微信公众号token验证失败的一些总结

    这几天准备弄一个微信公众号,在进行服务器配置的时候出现总是出现token验证失败的报错. 实际上,这个问题很好解决.既然微信平台没有给我们很明确的报错提示,那么我们就可以通过跟踪获取到的请求参数进行分 ...

  6. rhApp遇到的项目问题

    1.如果有多人同时操作一个桌台的情况下,如何处理: 2.index页面点击清空的时候是否要把桌台一起清掉: 3.账单界面已结账的小单背景色是否需要和未结账的不同:

  7. (C#)Windows Shell 外壳编程系列6 - 执行

    原文(C#)Windows Shell 外壳编程系列6 - 执行 (本系列文章由柠檬的(lc_mtt)原创,转载请注明出处,谢谢-) 接上一节:(C#)Windows Shell 外壳编程系列5 - ...

  8. Hello China操作系统STM32移植指南(三)

    移植到STM32的源代码,可从下列链接下载: http://download.csdn.net/detail/hellochina15/7049909 包含两个包:一个是移植前的Hello China ...

  9. Pascal向C++的跨越

    最近从pas转向了C++,觉得需要在语言上总结对比一下,以及记录一些注意点,关于STL,还需要之后好好地学习.同时,希望这篇文章对从pas转C++的同学有所帮助. 基本类型 首先是基本类型的比较: P ...

  10. Android 实现简单天气应用

    引导页面,多个城市的天气,可以通过滑动来翻阅. 先看下截图: 1.城市天气界面 2.引导界面 应用引导页面 package org.qxj.iweather.page; import org.qxj. ...