UVA 103 Stacking Boxes (dp + DAG上的最长路径 + 记忆化搜索)
Stacking Boxes |
Background
Some concepts in Mathematics and Computer Science are simple in one or two dimensions but become more complex when extended to arbitrary dimensions. Consider solving differential equations in several dimensions and analyzing the topology of an n-dimensional hypercube. The former is much more complicated than its one dimensional relative while the latter bears a remarkable resemblance to its ``lower-class'' cousin.
The Problem
Consider an n-dimensional ``box'' given by its dimensions. In two dimensions the box (2,3) might represent a box with length 2 units and width 3 units. In three dimensions the box (4,8,9) can represent a box (length, width, and height). In 6 dimensions it is, perhaps, unclear what the box (4,5,6,7,8,9) represents; but we can analyze properties of the box such as the sum of its dimensions.
In this problem you will analyze a property of a group of n-dimensional boxes. You are to determine the longest nesting string of boxes, that is a sequence of boxes such that each box
nests in box
(
.
A box D = ( ) nests in a box E = (
) if there is some rearrangement of the
such that when rearranged each dimension is less than the corresponding dimension in box E. This loosely corresponds to turning box D to see if it will fit in box E. However, since any rearrangement suffices, box D can be contorted, not just turned (see examples below).
For example, the box D = (2,6) nests in the box E = (7,3) since D can be rearranged as (6,2) so that each dimension is less than the corresponding dimension in E. The box D = (9,5,7,3) does NOT nest in the box E = (2,10,6,8) since no rearrangement of D results in a box that satisfies the nesting property, but F = (9,5,7,1) does nest in box E since F can be rearranged as (1,9,5,7) which nests in E.
Formally, we define nesting as follows: box D = ( ) nests in box E = (
) if there is a permutation
of
such that (
) ``fits'' in (
) i.e., if
for all
.
The Input
The input consists of a series of box sequences. Each box sequence begins with a line consisting of the the number of boxes k in the sequence followed by the dimensionality of the boxes, n (on the same line.)
This line is followed by k lines, one line per box with the n measurements of each box on one line separated by one or more spaces. The line in the sequence (
) gives the measurements for the
box.
There may be several box sequences in the input file. Your program should process all of them and determine, for each sequence, which of the k boxes determine the longest nesting string and the length of that nesting string (the number of boxes in the string).
In this problem the maximum dimensionality is 10 and the minimum dimensionality is 1. The maximum number of boxes in a sequence is 30.
The Output
For each box sequence in the input file, output the length of the longest nesting string on one line followed on the next line by a list of the boxes that comprise this string in order. The ``smallest'' or ``innermost'' box of the nesting string should be listed first, the next box (if there is one) should be listed second, etc.
The boxes should be numbered according to the order in which they appeared in the input file (first box is box 1, etc.).
If there is more than one longest nesting string then any one of them can be output.
Sample Input
5 2
3 7
8 10
5 2
9 11
21 18
8 6
5 2 20 1 30 10
23 15 7 9 11 3
40 50 34 24 14 4
9 10 11 12 13 14
31 4 18 8 27 17
44 32 13 19 41 19
1 2 3 4 5 6
80 37 47 18 21 9
Sample Output
5
3 1 2 4 5
4
7 2 5 6
题意:给定n个m维的箱子。问最多能套几层
思路:我用的是记忆化搜索。。用一个dp数组来记录套了几个。如果搜索过程中小于的直接不考虑
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std; int n, m, i, j, Max, dp[35], way[35], save[35];
struct Box {
int d[15];
} b[35]; int judge(int small, int big) {
for (int i = 0; i < m; i ++)
if (b[small].d[i] >= b[big].d[i])
return 0;
return 1;
} void dfs(int now, int num) {
for (int i = 1; i <= n; i ++) {
if (i != now && judge(now, i) && dp[i] < num + 1) {//dp[i] < num + 1 是记忆化搜索的关键。
dp[i] = num + 1;
save[num] = i;
dfs(i, num + 1);
}
}
if (Max < num) {
Max = num;
for (int j = 0; j < num; j ++)
way[j] = save[j];
}
} int main() {
while (~scanf("%d%d", &n, &m)) {
Max = 0;
memset(dp, 0, sizeof(dp));
for (i = 1; i <= n; i ++) {
for (j = 0; j < m; j ++) {
scanf("%d", &b[i].d[j]);
}
sort(b[i].d, b[i].d + m);
}
dfs(0, 0);
printf("%d\n", Max);
for (i = 0; i < Max - 1; i ++)
printf("%d ", way[i]);
printf("%d\n", way[Max - 1]);
}
return 0;
}
UVA 103 Stacking Boxes (dp + DAG上的最长路径 + 记忆化搜索)的更多相关文章
- uva 103 Stacking Boxes(DAG)
题目连接:103 - Stacking Boxes 题目大意:有n个w维立体, 输出立体互相嵌套的层数的最大值, 并输出嵌套方式, 可嵌套的要求是外层立体的w条边可以分别对应大于内层立体. 解题思路: ...
- UVa 103 Stacking Boxes --- DAG上的动态规划
UVa 103 题目大意:给定n个箱子,每个箱子有m个维度, 一个箱子可以嵌套在另一个箱子中当且仅当该箱子的所有的维度大小全部小于另一个箱子的相应维度, (注意箱子可以旋转,即箱子维度可以互换),求最 ...
- poj 3249 Test for Job (DAG最长路 记忆化搜索解决)
Test for Job Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 8990 Accepted: 2004 Desc ...
- UVa 103 - Stacking Boxes(dp求解)
题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...
- UVa 103 - Stacking Boxes
题目大意:矩阵嵌套,不过维数是多维的.有两个个k维的盒子A(a1, a1...ak), B(b1, b2...bk),若能找到(a1...ak)的一个排列使得ai < bi,则盒子A可嵌套在盒子 ...
- UVa 103 - Stacking Boxes (LIS,打印路径)
链接:UVa 103 题意:给n维图形,它们的边长是{d1,d2,d3...dn}, 对于两个n维图形,求满足当中一个的全部边长 依照随意顺序都一一相应小于还有一个的边长,这种最长序列的个数,而且打 ...
- UVA 103 Stacking Boxes n维最长上升子序列
题目链接:UVA - 103 题意:现有k个箱子,每个箱子可以用n维向量表示.如果一个箱子的n维向量均比另一个箱子的n维向量大,那么它们可以套接在一起,每个箱子的n维向量可以互相交换值,如箱子(2,6 ...
- uva 103 Stacking Boxes(最长上升子序列)
Description Stacking Boxes Background Some concepts in Mathematics and Computer Science are simp ...
- UVA 103 Stacking Boxes 套箱子 DAG最长路 dp记忆化搜索
题意:给出几个多维的箱子,如果箱子的每一边都小于另一个箱子的对应边,那就称这个箱子小于另一个箱子,然后要求能够套出的最多的箱子. 要注意的是关系图的构建,对箱子的边排序,如果分别都小于另一个箱子就说明 ...
随机推荐
- linux c 通过文件描写叙述符获取文件名称
在linux中每一个被打开的文件都会在/proc/self/fd/文件夹中有记录,当中(/proc/self/fd/文件描写叙述符号:这个文件是符号文件)的文件就是文件描写叙述符所相应的文件. 而re ...
- docker基础入门之二
一.docker文件系统: linuxFS包括boot file system 和 root file system boot file system (bootfs),包含bootloader和ke ...
- js 计算两个时间差
/* * 计算两个日期的间隔天数* BeginDate:起始日期的文本框,格式為:2012-01-01* EndDate:結束日期的文本框,格式為:2012-01-02* 返回兩個日期所差的天數* 調 ...
- 下载文件 ,调用系统的方法(UIDocumentInteractionController) 查看
- SQLite For .Net 已经整合了32位和64位
以前引用SQLite.DLL的时候,如果是winform等桌面程序,还要分32位和64位不一样的DLL,但最近已经整合为一个包了 打开vs的程序包管理器控制器,输入: install-package ...
- 在CG/HLSL中访问着色器属性(Properties)
在CG/HLSL中访问着色器属性 Shader在Properties块中访问材质属性.如果你想在一个着色程序中访问一些属性,你需要声明一个Cg/HLSL具有相同的名称和一个匹配的类型的变量. Prop ...
- 怎样用Excel自动排成绩
经常需要做表格,排成绩名次总是笨笨的一个一个填,费时又费力,终于找到了解决的办法%>_<%(不要嘲笑我了(✿◡‿◡)),原来就是一个名叫RANK的函数,还在苦逼地自己输的小伙伴们,快来看吧 ...
- Struts学习之集成Ajax
转自:http://blog.csdn.net/hanxuemin12345/article/details/38782213 一,引题 1,Json数据格式简介 JSON是脱离语言的理想的数据交换格 ...
- MongDb添加嵌套文档
想添加嵌套文档,就需要创建2个实体类.如下图 usermodel.Student = student; 其中Student的类型就是StudentModel: 第一个实体类 ...
- IE 弹出提示:由于无法验证发布者,所以Windows 已经阻止此软件
由于无法验证发布者,所以Windows 已经阻止此软件 按如下步骤:1.打开Internet Explorer---菜单栏点“工具”---Internet选项--安全---自定义级别---安全设置-- ...