UVA 103 Stacking Boxes (dp + DAG上的最长路径 + 记忆化搜索)
| Stacking Boxes |
Background
Some concepts in Mathematics and Computer Science are simple in one or two dimensions but become more complex when extended to arbitrary dimensions. Consider solving differential equations in several dimensions and analyzing the topology of an n-dimensional hypercube. The former is much more complicated than its one dimensional relative while the latter bears a remarkable resemblance to its ``lower-class'' cousin.
The Problem
Consider an n-dimensional ``box'' given by its dimensions. In two dimensions the box (2,3) might represent a box with length 2 units and width 3 units. In three dimensions the box (4,8,9) can represent a box
(length, width, and height). In 6 dimensions it is, perhaps, unclear what the box (4,5,6,7,8,9) represents; but we can analyze properties of the box such as the sum of its dimensions.
In this problem you will analyze a property of a group of n-dimensional boxes. You are to determine the longest nesting string of boxes, that is a sequence of boxes
such that each box
nests in box
(
.
A box D = (
) nests in a box E = (
) if there is some rearrangement of the
such that when rearranged each dimension is less than the corresponding dimension in box E. This loosely corresponds to turning box D to see if it will fit in box E. However, since any rearrangement suffices, box D can be contorted, not just turned (see examples below).
For example, the box D = (2,6) nests in the box E = (7,3) since D can be rearranged as (6,2) so that each dimension is less than the corresponding dimension in E. The box D = (9,5,7,3) does NOT nest in the box E = (2,10,6,8) since no rearrangement of D results in a box that satisfies the nesting property, but F = (9,5,7,1) does nest in box E since F can be rearranged as (1,9,5,7) which nests in E.
Formally, we define nesting as follows: box D = (
) nests in box E = (
) if there is a permutation
of
such that (
) ``fits'' in (
) i.e., if
for all
.
The Input
The input consists of a series of box sequences. Each box sequence begins with a line consisting of the the number of boxes k in the sequence followed by the dimensionality of the boxes, n (on the same line.)
This line is followed by k lines, one line per box with the n measurements of each box on one line separated by one or more spaces. The
line in the sequence (
) gives the measurements for the
box.
There may be several box sequences in the input file. Your program should process all of them and determine, for each sequence, which of the k boxes determine the longest nesting string and the length of that nesting string (the number of boxes in the string).
In this problem the maximum dimensionality is 10 and the minimum dimensionality is 1. The maximum number of boxes in a sequence is 30.
The Output
For each box sequence in the input file, output the length of the longest nesting string on one line followed on the next line by a list of the boxes that comprise this string in order. The ``smallest'' or ``innermost'' box of the nesting string should be listed first, the next box (if there is one) should be listed second, etc.
The boxes should be numbered according to the order in which they appeared in the input file (first box is box 1, etc.).
If there is more than one longest nesting string then any one of them can be output.
Sample Input
5 2
3 7
8 10
5 2
9 11
21 18
8 6
5 2 20 1 30 10
23 15 7 9 11 3
40 50 34 24 14 4
9 10 11 12 13 14
31 4 18 8 27 17
44 32 13 19 41 19
1 2 3 4 5 6
80 37 47 18 21 9
Sample Output
5
3 1 2 4 5
4
7 2 5 6
题意:给定n个m维的箱子。问最多能套几层
思路:我用的是记忆化搜索。。用一个dp数组来记录套了几个。如果搜索过程中小于的直接不考虑
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std; int n, m, i, j, Max, dp[35], way[35], save[35];
struct Box {
int d[15];
} b[35]; int judge(int small, int big) {
for (int i = 0; i < m; i ++)
if (b[small].d[i] >= b[big].d[i])
return 0;
return 1;
} void dfs(int now, int num) {
for (int i = 1; i <= n; i ++) {
if (i != now && judge(now, i) && dp[i] < num + 1) {//dp[i] < num + 1 是记忆化搜索的关键。
dp[i] = num + 1;
save[num] = i;
dfs(i, num + 1);
}
}
if (Max < num) {
Max = num;
for (int j = 0; j < num; j ++)
way[j] = save[j];
}
} int main() {
while (~scanf("%d%d", &n, &m)) {
Max = 0;
memset(dp, 0, sizeof(dp));
for (i = 1; i <= n; i ++) {
for (j = 0; j < m; j ++) {
scanf("%d", &b[i].d[j]);
}
sort(b[i].d, b[i].d + m);
}
dfs(0, 0);
printf("%d\n", Max);
for (i = 0; i < Max - 1; i ++)
printf("%d ", way[i]);
printf("%d\n", way[Max - 1]);
}
return 0;
}
UVA 103 Stacking Boxes (dp + DAG上的最长路径 + 记忆化搜索)的更多相关文章
- uva 103 Stacking Boxes(DAG)
题目连接:103 - Stacking Boxes 题目大意:有n个w维立体, 输出立体互相嵌套的层数的最大值, 并输出嵌套方式, 可嵌套的要求是外层立体的w条边可以分别对应大于内层立体. 解题思路: ...
- UVa 103 Stacking Boxes --- DAG上的动态规划
UVa 103 题目大意:给定n个箱子,每个箱子有m个维度, 一个箱子可以嵌套在另一个箱子中当且仅当该箱子的所有的维度大小全部小于另一个箱子的相应维度, (注意箱子可以旋转,即箱子维度可以互换),求最 ...
- poj 3249 Test for Job (DAG最长路 记忆化搜索解决)
Test for Job Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 8990 Accepted: 2004 Desc ...
- UVa 103 - Stacking Boxes(dp求解)
题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...
- UVa 103 - Stacking Boxes
题目大意:矩阵嵌套,不过维数是多维的.有两个个k维的盒子A(a1, a1...ak), B(b1, b2...bk),若能找到(a1...ak)的一个排列使得ai < bi,则盒子A可嵌套在盒子 ...
- UVa 103 - Stacking Boxes (LIS,打印路径)
链接:UVa 103 题意:给n维图形,它们的边长是{d1,d2,d3...dn}, 对于两个n维图形,求满足当中一个的全部边长 依照随意顺序都一一相应小于还有一个的边长,这种最长序列的个数,而且打 ...
- UVA 103 Stacking Boxes n维最长上升子序列
题目链接:UVA - 103 题意:现有k个箱子,每个箱子可以用n维向量表示.如果一个箱子的n维向量均比另一个箱子的n维向量大,那么它们可以套接在一起,每个箱子的n维向量可以互相交换值,如箱子(2,6 ...
- uva 103 Stacking Boxes(最长上升子序列)
Description Stacking Boxes Background Some concepts in Mathematics and Computer Science are simp ...
- UVA 103 Stacking Boxes 套箱子 DAG最长路 dp记忆化搜索
题意:给出几个多维的箱子,如果箱子的每一边都小于另一个箱子的对应边,那就称这个箱子小于另一个箱子,然后要求能够套出的最多的箱子. 要注意的是关系图的构建,对箱子的边排序,如果分别都小于另一个箱子就说明 ...
随机推荐
- CodeForces 160D - Distance in Tree 树型DP
题目给了512MB的空间....用dp[k][i]代表以k为起点...往下面走(走直的不打岔)i步能有多少方案....在更新dp[k][i]过程中同时统计答案.. Program: #include& ...
- entity framework 中一些常用的函数 转自http://www.cnblogs.com/williamzhu/
一般查询 var Courses = db.Courses.Where(c => c.Title == "Physics").OrderBy(c => c.Title) ...
- hough变换是如何检测出直线和圆的?
(I)直线篇 1 直线是如何表示的?对于平面中的一条直线,在笛卡尔坐标系中,常见的有点斜式,两点式两种表示方法.然而在hough变换中,考虑的是另外一种表示方式:使用(r,theta)来表示一条直线. ...
- C++ 字符串分割,分割到vector中
#include <string> #include <vector> using std::string; using std::vector; int splitStrin ...
- POJ 2778 DNA Sequence(AC自动机+矩阵快速幂)
题目链接:http://poj.org/problem?id=2778 题意:有m种DNA序列是有疾病的,问有多少种长度为n的DNA序列不包含任何一种有疾病的DNA序列.(仅含A,T,C,G四个字符) ...
- 重定向输入输出流--freopen
freopen是被包含于C标准库头文件<stdio.h>中的一个函数,用于重定向输入输出流.该函数可以在不改变代码原貌的情况下改变输入输出环境. C99函数声明: FILE *freope ...
- php内核一 一次请求与结束
php开始 到 结束 有两个阶段 请求开始之间的初始化阶段 请求之后的结束处理阶段 开始阶段: 模块初始化 模块激活 模块初始化: 在整个SAPI生命周期内,只执行一次(apache服务器启动的 ...
- js中||和&&的用法
在js中&&.||不一定都是用来判断一个表达式的逻辑值是true.false,更多的是用来依据真值或者假值执行相应操作! a() && b() :如果执行a()后返回t ...
- 转;说说AngularJS中的$parse和$eval
说说AngularJS中的$parse和$eval AngularJS的初学者常常会对$parse和$eval两个内建服务感到有些困惑,今天我们就来说说AngularJS中的$parse和$eval. ...
- Qt 设置背景图片3种方法(QPalette可以做无数的事情,一旦控件指定了调色板,就要乖乖听它的话;QPainter当场绘制当然也没有问题,还有就是QSS)
方法1. setStylSheet{"QDialog{background-image:url()"}} //使用styleSheet 这种方法的好处是继承它的dialog都会自 ...