Matrix Power Series
Time Limit: 3000MS   Memory Limit: 131072K
Total Submissions: 12346   Accepted: 5262

Description

Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.

Input

The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.

Output

Output the elements of S modulo m in the same way as A is given.

Sample Input

2 2 4
0 1
1 1

Sample Output

1 2
2 3

我比较喜欢用数组做矩阵乘法而不是用结构体做,而且用数组做效率更高,本代码poj跑了460ms,代码中有详细注释

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<queue>
#include<algorithm>
#include<map>
#include<iomanip>
#define INF 99999999
using namespace std; const int MAX=30+10;
__int64 array[MAX][MAX],sum[MAX][MAX],temp[MAX][MAX],ans[MAX][MAX];
int n,m,k;
//array记录初始矩阵,sum记录每次幂乘后的矩阵,temp临时矩阵,ans记录结果矩阵 void MatrixInit(__int64 a[MAX][MAX],bool flag){//初始化矩阵,可以初始化为1或者A
for(int i=0;i<n;++i){
for(int j=0;j<n;++j){
if(flag)a[i][j]=array[i][j];//初始化为矩阵A(A是指题目中的A,也就是这里的array)
else a[i][j]=(i == j);//初始化为矩阵1
}
}
} void MatrixAdd(__int64 a[MAX][MAX],__int64 b[MAX][MAX],int &mod){//矩阵相加,a为相加后的矩阵
for(int i=0;i<n;++i){
for(int j=0;j<n;++j){
a[i][j]=(a[i][j]+b[i][j])%mod;
}
}
} void MatrixMult(__int64 a[MAX][MAX],__int64 b[MAX][MAX],int &mod){//矩阵相乘,a为相乘后的矩阵
__int64 c[MAX][MAX]={0};
for(int i=0;i<n;++i){
for(int j=0;j<n;++j){
for(int k=0;k<n;++k){
c[i][j]+=a[i][k]*b[k][j];
}
}
}
for(int i=0;i<n;++i){
for(int j=0;j<n;++j)a[i][j]=c[i][j]%mod;
}
} void MatrixPow(int k,int &mod){//矩阵快速幂
MatrixInit(sum,0);//初始化sum为1
MatrixInit(temp,1);//初始化temp为A
while(k){
if(k&1)MatrixMult(sum,temp,mod);
MatrixMult(temp,temp,mod);
k>>=1;
}
} void MatrixSum(int k,int &mod){//矩阵和
if(k == 1){MatrixInit(ans,1);return;}
MatrixSum(k/2,mod);
MatrixPow((k+1)/2,mod);
if(k&1){//k为奇数则A+(A+A^m)*(A+A^2+A^3...),m=(k+1)/2
MatrixInit(temp,1);//初始化temp为A
MatrixAdd(sum,temp,mod);//计算A+A^m,m=(k+1)/2
MatrixMult(ans,sum,mod);//计算(A+A^m)*(A^1+A^2+...)
MatrixAdd(ans,temp,mod);//计算A+(A+A^m)*(A^1+A^2...)
}
else{//k为偶数则(1+A^m)*(A+A^2+A^3...),m=(k+1)/2
MatrixInit(temp,0);//初始化temp为1
MatrixAdd(temp,sum,mod);//计算1+A^m,m=(k+1)/2
MatrixMult(ans,temp,mod);//计算(1+A^m)*(A^1+A^2+...)
}
} int main(){
scanf("%d%d%d",&n,&k,&m);
for(int i=0;i<n;++i){
for(int j=0;j<n;++j){
scanf("%I64d",&array[i][j]);
ans[i][j]=0;//ans是矩阵和
}
}
MatrixSum(k,m);//矩阵和:A^1+A^2+A^3+A^4+A^5+A^6=(A^1+A^2+A^3)+A^3(A^1+A^2+A^3)
for(int i=0;i<n;++i){
for(int j=0;j<n-1;++j)printf("%d ",ans[i][j]);
printf("%I64d\n",ans[i][n-1]);
}
return 0;
}

poj3233之经典矩阵乘法的更多相关文章

  1. hdu1588之经典矩阵乘法

    Gauss Fibonacci Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  2. zoj3497(经典矩阵乘法)

    原以为是用搜索做的题,想了好久都无法想到一个高效正确的解法. 后面发现竟然这就是矩阵的应用! 碉堡! 给定一个有向图,问从A点恰好走k步(允许重复经过边)到达B点的方案数mod p的值  ——选自ma ...

  3. 学习心得:《十个利用矩阵乘法解决的经典题目》from Matrix67

    本文来自:http://www.matrix67.com/blog/archives/tag/poj大牛的博文学习学习 节选如下部分:矩阵乘法的两个重要性质:一,矩阵乘法不满足交换律:二,矩阵乘法满足 ...

  4. 【转】Matrix67:十个利用矩阵乘法解决的经典题目

    好像目前还没有这方面题目的总结.这几天连续看到四个问这类题目的人,今天在这里简单写一下.这里我们不介绍其它有关矩阵的知识,只介绍矩阵乘法和相关性质.    不要以为数学中的矩阵也是黑色屏幕上不断变化的 ...

  5. 【矩阵乘法经典应用】【ZOJ3497】【Mistwa】

    题意:给定一个有向图(最多25个节点,每个节点的出度最多为4),给定起点和终点,然后从起点开始走,走到终点就停止,否则一直往下走,问能不能P步到达终点.也就是说从起点出发,走一条长度为P的路径,路径中 ...

  6. poj3233 题解 矩阵乘法 矩阵快速幂

    题意:求S = A + A2 + A3 + … + Ak.(mod m) 这道题很明显可以用矩阵乘法,但是这道题的矩阵是分块矩阵, 分块矩阵概念如下:当一个矩阵A中的单位元素aij不是一个数值而是一个 ...

  7. POJ3233 [C - Matrix Power Series] 矩阵乘法

    解题思路 题目里要求\(\sum_{i=1}^kA^i\),我们不妨再加上一个单位矩阵,求\(\sum_{i=0}^kA^i\).然后我们发现这个式子可以写成这样的形式:\(A(A(A...)+E)+ ...

  8. 矩阵乘法优化DP复习

    前言 最近做毒瘤做多了--联赛难度的东西也该复习复习了. Warning:本文较长,难度分界线在"中场休息"部分,如果只想看普及难度的可以从第五部分直接到注意事项qwq 文中用(比 ...

  9. CH Round #30 摆花[矩阵乘法]

    摆花 CH Round #30 - 清明欢乐赛 背景及描述 艺术馆门前将摆出许多花,一共有n个位置排成一排,每个位置可以摆花也可以不摆花.有些花如果摆在相邻的位置(隔着一个空的位置不算相邻),就不好看 ...

随机推荐

  1. maven添加oracle jdbc依赖

    maven添加oracle jdbc依赖 由于Oracle授权问题,Maven不提供Oracle JDBC driver,为了在Maven项目中应用Oracle JDBC driver,必须手动添加到 ...

  2. 转:C#中的委托和事件(续)

    引言 如果你看过了 C#中的委托和事件 一文,我想你对委托和事件已经有了一个基本的认识.但那些远不是委托和事件的全部内容,还有很多的地方没有涉及.本文将讨论委托和事件一些更为细节的问题,包括一些大家常 ...

  3. Linux系统编程(8)—— 进程之进程控制函数fork

    fork()函数通过系统调用创建一个与原来进程几乎完全相同的进程,也就是两个进程可以做完全相同的事,但如果初始参数或者传入的变量不同,两个进程也可以做不同的事. 一个进程调用fork()函数后,系统先 ...

  4. UESTC_Judgment Day CDOJ 11

    Today is the judgment day. The world is ending and all man will pay for their guilt and sin. Now the ...

  5. 【总结】OJ练习,进行的一些编程语言方面总结

    1.STL vector只有四个构造函数 ) explicit vector (const allocator_type& alloc = allocator_type()); fill () ...

  6. ZOJ3477&JAVA大数类

    转:http://blog.csdn.net/sunkun2013/article/details/11822927 import java.util.*; import java.math.BigI ...

  7. 企业OA面临的问题,以及解决问题的推荐

          现在的企业不管大小都趋于软件话,而办公用的OA软件更是成为了企业中不可获取的一环,一个好的软件能让企业发展的更加顺利,而一个不合适的软件可能让公司哀声怨道反而起了反作用!       OA ...

  8. Android Project from Existing Code 生成 R 文件错误、失败等问题解决办法 - 持续更新

    Android Project from Existing Code 生成 R 文件错误.失败等问题解决办法 - 持续更新 git  上的项目,pull下来之后用Android Project fro ...

  9. 在Swift中使用遗留的C API

    Swift的类型系统的设计目的在于简化我们的生活,为此它强制用户遵守严格的代码规范来达到这一点.毫无疑问这是一件大好事,它鼓励程序员们编写 更好更正确的代码.然而,当Swift与历史遗留的代码库.特别 ...

  10. LFS:kernel panic VFS: Unable to mount root fs

    说明: 使用Vm虚拟机构建自己的LFS系统时,系统引导不成功,提示 kernel panic VFS: Unable to mount root fs 参考链接:http://www.52os.net ...