1086 Tree Traversals Again(25 分)

An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example, suppose that when a 6-node binary tree (with the keys numbered from 1 to 6) is traversed, the stack operations are: push(1); push(2); push(3); pop(); pop(); push(4); pop(); pop(); push(5); push(6); pop(); pop(). Then a unique binary tree (shown in Figure 1) can be generated from this sequence of operations. Your task is to give the postorder traversal sequence of this tree.


Figure 1

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (≤30) which is the total number of nodes in a tree (and hence the nodes are numbered from 1 to N). Then 2N lines follow, each describes a stack operation in the format: "Push X" where X is the index of the node being pushed onto the stack; or "Pop" meaning to pop one node from the stack.

Output Specification:

For each test case, print the postorder traversal sequence of the corresponding tree in one line. A solution is guaranteed to exist. All the numbers must be separated by exactly one space, and there must be no extra space at the end of the line.

Sample Input:

6
Push 1
Push 2
Push 3
Pop
Pop
Push 4
Pop
Pop
Push 5
Push 6
Pop
Pop

Sample Output:

3 4 2 6 5 1

题目大意:二叉树的中根遍历,可以通过栈来实现,那么现在给出一棵二叉树的中根遍历操作,要求输出后根遍历结果。

//完全可以通过输入来确定这棵二叉树的中根遍历,即已知中根遍历求后根遍历。但是我不会啊。

代码转自:https://www.liuchuo.net/archives/2168

#include <cstdio>
#include <vector>
#include <stack>
#include <cstring>
using namespace std;
vector<int> pre, in, post,value;
void postorder(int root, int start, int end) {
if (start > end) return;
int i = start;
while (i < end && in[i] != pre[root]) {//中序遍历序列中存的节点的id,唯一的!
i++;
printf("%d %d\n" ,in[i],pre[root]);
}
postorder(root + , start, i - );
//左子树共有i-start+1个节点。
postorder(root + + i - start, i + , end);
post.push_back(pre[root]);
}
int main() {
int n;
scanf("%d", &n);
char str[];
stack<int> s;
int key=;
while (~scanf("%s", str)) {
if (strlen(str) == ) {
int num;
scanf("%d", &num);
value.push_back(num);
pre.push_back(key);//对应num有一个序号,从0开始。 s.push(key++);
} else {
in.push_back(s.top());//现在存了中序遍历
//存的是id对应的序号(为了防止重复呢。)
s.pop();
}
} postorder(, , n - );
printf("\n");
printf("%d", value[post[]]);
for (int i = ; i < n; i++)
printf(" %d",value[post[i]]);
return ;
}

//这个代码简直太难了,看了好几遍都理解不了那个中序转后序的,气死了。

//这个明天还要搜一下别的题解,简直气死我了。

//更要重点掌握一套,二叉树的各种访问序列转换方法。

2018-11-17更——————

我的AC:

#include <iostream>
#include <cstdio>
#include <vector>
#include<stack> using namespace std;
vector<int> in,pre,post;
void postOrder(int inL,int inR,int preL,int preR){
if(inL>inR)return ;
// int i=0;//标识中根遍历中的根节点下标
int i=;
while(in[i]!=pre[preL])i++;
//遍历左右子树
postOrder(inL,i-,preL+,preR+i-inL);
postOrder(i+,inR,preL+i-inL+,preR);
post.push_back(in[i]);
}
int main()
{
//push的顺序就是前序,弹出的顺序就是中序。
int n,id;
cin>>n;
string s;
stack<int> tree;
for(int i=;i<*n;i++){
cin>>s;
if(s[]=='u'){
cin>>id;
tree.push(id);
pre.push_back(id);//前序遍历放进来。
}else{
int temp=tree.top();
tree.pop();
in.push_back(temp);
}
}
// cout<<pre.size();
postOrder(,n-,,n-);
for(int i=;i<n;i++){
cout<<post[i];
if(i!=n-)cout<<" ";
}
return ;
}

//在牛客网上通不过,说内存超限,通过率为0,因为递归层数太深?

遇到的问题:

1.postOrder函数,作为递归出口应该是in的左右去判断,如果是pre的,则不会输出结果

2.在postOrder的while循环中,i可以从0开始判断。

3.柳神的代码考虑了key不唯一的情况,但是我没考虑,而且PAT上应该也没考虑,否则就不会AC了。

4.关于这个key的问题,是应该考虑一下不唯一的情况的,因为题目里并没有说。

PAT 1086 Tree Traversals Again[中序转后序][难]的更多相关文章

  1. PAT 1086 Tree Traversals Again

    PAT 1086 Tree Traversals Again 题目: An inorder binary tree traversal can be implemented in a non-recu ...

  2. PAT 甲级 1086 Tree Traversals Again (25分)(先序中序链表建树,求后序)***重点复习

    1086 Tree Traversals Again (25分)   An inorder binary tree traversal can be implemented in a non-recu ...

  3. 1086 Tree Traversals Again——PAT甲级真题

    1086 Tree Traversals Again An inorder binary tree traversal can be implemented in a non-recursive wa ...

  4. PAT Advanced 1086 Tree Traversals Again (25) [树的遍历]

    题目 An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For exam ...

  5. PAT 1020. Tree Traversals

    PAT 1020. Tree Traversals Suppose that all the keys in a binary tree are distinct positive integers. ...

  6. [LeetCode] Construct Binary Tree from Inorder and Postorder Traversal 由中序和后序遍历建立二叉树

    Given inorder and postorder traversal of a tree, construct the binary tree. Note: You may assume tha ...

  7. LeetCode 106. Construct Binary Tree from Inorder and Postorder Traversal 由中序和后序遍历建立二叉树 C++

    Given inorder and postorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  8. 【构建二叉树】02根据中序和后序序列构造二叉树【Construct Binary Tree from Inorder and Postorder Traversal】

    我们都知道,已知中序和后序的序列是可以唯一确定一个二叉树的. 初始化时候二叉树为:================== 中序遍历序列,           ======O=========== 后序遍 ...

  9. PAT A1020 Tree Traversals(25)

    题目描述 Suppose that all the keys in a binary tree are distinct positive integers. Given the postorder ...

随机推荐

  1. 新手入门贴:史上最全Web端即时通讯技术原理详解

    关于IM(InstantMessaging)即时通信类软件(如微信,QQ),大多数都是桌面应用程序或者native应用较为流行,而网上关于原生IM或桌面IM软件类的通信原理介绍也较多,此处不再赘述.而 ...

  2. 回文树(回文自动机) - BZOJ 3676 回文串

    BZOJ 3676 回文串 Problem's Link: http://www.lydsy.com/JudgeOnline/problem.php?id=3676 Mean: 略 analyse: ...

  3. Linux - 用户管理常用命令

    1.查看Linux已经存在的用户: [root@CMCC_91 ~]# cut -d : -f 1 /etc/passwd [root@CMCC_91 ~]# cat /etc/passwd |awk ...

  4. Javascript 验证上传图片大小[客户端验证]

    需求分析: 在做上传图片的时候,如果不限制上传图片大小,后果非常的严重.那么我们怎样才可以解决一个棘手的问题呢?有两种方式: 1)后台处理: 也就是AJAX POST提交到后台,把图片上传到服务器上, ...

  5. git error Another git process seems to be running in this repository

    How to fix error Another git process seems to be running in this repository When you use Git, you se ...

  6. ubuntu安装wineqq遇到错误

    在安装中发生了错误:Errors were encountered while processing: wine-qqintl 原因是还有lib没有配置,所以再输入sudo apt-get insta ...

  7. Excel 经常使用的公式总结

    INDIRECT 返回并显示指定引用的内容.使用INDIRECT函数可引用其他工作簿的名称.工作表名称和单元格引用.   indirect函数对单元格引用的两种 A B C D INDIRECT(&q ...

  8. USACO4.2.1 网络流最大流算法

    /* ID:hk945801 TASK:ditch LANG:C++ */ #include<iostream> #include<cstdio> #include<cs ...

  9. log4j配置文件

    log4j.rootLogger=INFO,CONSOLElog4j.addivity.org.apache=truelog4j.appender.stdout=org.apache.log4j.Co ...

  10. D3D中的渲染状态简介

    1). 设置着色模式: SetRenderState(D3DRS_SHADEMODE, D3DSHADE_FLAT) //设置平面着色模式 SetRenderState(D3DRS_SHADEMODE ...