ubuntu18 tensorflow faster_rcnn cpu训练自己数据集
(flappbird) luo@luo-ThinkPad-W540:tf-faster-rcnn$ ./experiments/scripts/train_faster_rcnn.sh 0 pascal_voc_0712 res101
+ set -e
+ export PYTHONUNBUFFERED=True
+ PYTHONUNBUFFERED=True
+ GPU_ID=0
+ DATASET=pascal_voc_0712
+ NET=res101
+ array=($@)
+ len=3
+ EXTRA_ARGS=
+ EXTRA_ARGS_SLUG=
+ case ${DATASET} in
+ TRAIN_IMDB=voc_2007_trainval+voc_2012_trainval
+ TEST_IMDB=voc_2007_test
+ STEPSIZE='[80000]'
+ ITERS=110000
+ ANCHORS='[8,16,32]'
+ RATIOS='[0.5,1,2]'
++ date +%Y-%m-%d_%H-%M-%S
+ LOG=experiments/logs/res101_voc_2007_trainval+voc_2012_trainval__res101.txt.2019-04-04_16-16-38
+ exec
++ tee -a experiments/logs/res101_voc_2007_trainval+voc_2012_trainval__res101.txt.2019-04-04_16-16-38
+ echo Logging output to experiments/logs/res101_voc_2007_trainval+voc_2012_trainval__res101.txt.2019-04-04_16-16-38
Logging output to experiments/logs/res101_voc_2007_trainval+voc_2012_trainval__res101.txt.2019-04-04_16-16-38
+ set +x
+ '[' '!' -f output/res101/voc_2007_trainval+voc_2012_trainval/default/res101_faster_rcnn_iter_110000.ckpt.index ']'
+ [[ ! -z '' ]]
+ CUDA_VISIBLE_DEVICES=0
+ time python ./tools/trainval_net.py --weight data/imagenet_weights/res101.ckpt --imdb voc_2007_trainval+voc_2012_trainval --imdbval voc_2007_test --iters 110000 --cfg experiments/cfgs/res101.yml --net res101 --set ANCHOR_SCALES '[8,16,32]' ANCHOR_RATIOS '[0.5,1,2]' TRAIN.STEPSIZE '[80000]'
Called with args:
Namespace(cfg_file='experiments/cfgs/res101.yml', imdb_name='voc_2007_trainval+voc_2012_trainval', imdbval_name='voc_2007_test', max_iters=110000, net='res101', set_cfgs=['ANCHOR_SCALES', '[8,16,32]', 'ANCHOR_RATIOS', '[0.5,1,2]', 'TRAIN.STEPSIZE', '[80000]'], tag='../output_model_2019/2019_04_04/', weight='data/imagenet_weights/res101.ckpt')
Using config:
{'ANCHOR_RATIOS': [0.5, 1, 2],
 'ANCHOR_SCALES': [8, 16, 32],
 'DATA_DIR': '/home/luo/TensorflowProject/tf-faster-rcnn/data',
 'EXP_DIR': 'res101',
 'MATLAB': 'matlab',
 'MOBILENET': {'DEPTH_MULTIPLIER': 1.0,
               'FIXED_LAYERS': 5,
               'REGU_DEPTH': False,
               'WEIGHT_DECAY': 4e-05},
 'PIXEL_MEANS': array([[[102.9801, 115.9465, 122.7717]]]),
 'POOLING_MODE': 'crop',
 'POOLING_SIZE': 7,
 'RESNET': {'FIXED_BLOCKS': 1, 'MAX_POOL': False},
 'RNG_SEED': 3,
 'ROOT_DIR': '/home/luo/TensorflowProject/tf-faster-rcnn',
 'RPN_CHANNELS': 512,
 'TEST': {'BBOX_REG': True,
          'HAS_RPN': True,
          'MAX_SIZE': 1000,
          'MODE': 'nms',
          'NMS': 0.3,
          'PROPOSAL_METHOD': 'gt',
          'RPN_NMS_THRESH': 0.7,
          'RPN_POST_NMS_TOP_N': 300,
          'RPN_PRE_NMS_TOP_N': 6000,
          'RPN_TOP_N': 5000,
          'SCALES': [600],
          'SVM': False},
 'TRAIN': {'ASPECT_GROUPING': False,
           'BATCH_SIZE': 256,
           'BBOX_INSIDE_WEIGHTS': [1.0, 1.0, 1.0, 1.0],
           'BBOX_NORMALIZE_MEANS': [0.0, 0.0, 0.0, 0.0],
           'BBOX_NORMALIZE_STDS': [0.1, 0.1, 0.2, 0.2],
           'BBOX_NORMALIZE_TARGETS': True,
           'BBOX_NORMALIZE_TARGETS_PRECOMPUTED': True,
           'BBOX_REG': True,
           'BBOX_THRESH': 0.5,
           'BG_THRESH_HI': 0.5,
           'BG_THRESH_LO': 0.0,
           'BIAS_DECAY': False,
           'DISPLAY': 20,
           'DOUBLE_BIAS': False,
           'FG_FRACTION': 0.25,
           'FG_THRESH': 0.5,
           'GAMMA': 0.1,
           'HAS_RPN': True,
           'IMS_PER_BATCH': 1,
           'LEARNING_RATE': 0.001,
           'MAX_SIZE': 1000,
           'MOMENTUM': 0.9,
           'PROPOSAL_METHOD': 'gt',
           'RPN_BATCHSIZE': 256,
           'RPN_BBOX_INSIDE_WEIGHTS': [1.0, 1.0, 1.0, 1.0],
           'RPN_CLOBBER_POSITIVES': False,
           'RPN_FG_FRACTION': 0.5,
           'RPN_NEGATIVE_OVERLAP': 0.3,
           'RPN_NMS_THRESH': 0.7,
           'RPN_POSITIVE_OVERLAP': 0.7,
           'RPN_POSITIVE_WEIGHT': -1.0,
           'RPN_POST_NMS_TOP_N': 2000,
           'RPN_PRE_NMS_TOP_N': 12000,
           'SCALES': [600],
           'SNAPSHOT_ITERS': 5000,
           'SNAPSHOT_KEPT': 3,
           'SNAPSHOT_PREFIX': 'res101_faster_rcnn',
           'STEPSIZE': [80000],
           'SUMMARY_INTERVAL': 180,
           'TRUNCATED': False,
           'USE_ALL_GT': True,
           'USE_FLIPPED': True,
           'USE_GT': False,
           'WEIGHT_DECAY': 0.0001},
 'USE_E2E_TF': True,
 'USE_GPU_NMS': False}
Loaded dataset `voc_2007_trainval` for training
Set proposal method: gt
Appending horizontally-flipped training examples...
voc_2007_trainval gt roidb loaded from /home/luo/TensorflowProject/tf-faster-rcnn/data/cache/voc_2007_trainval_gt_roidb.pkl
done
Preparing training data...
done
Loaded dataset `voc_2012_trainval` for training
Set proposal method: gt
Appending horizontally-flipped training examples...
wrote gt roidb to /home/luo/TensorflowProject/tf-faster-rcnn/data/cache/voc_2012_trainval_gt_roidb.pkl
done
Preparing training data...
done
3100 roidb entries
Output will be saved to `/home/luo/TensorflowProject/tf-faster-rcnn/output/res101/voc_2007_trainval+voc_2012_trainval/../output_model_2019/2019_04_04/`
TensorFlow summaries will be saved to `/home/luo/TensorflowProject/tf-faster-rcnn/tensorboard/res101/voc_2007_trainval+voc_2012_trainval/../output_model_2019/2019_04_04/`
Loaded dataset `voc_2007_test` for training
Set proposal method: gt
Preparing training data...
wrote gt roidb to /home/luo/TensorflowProject/tf-faster-rcnn/data/cache/voc_2007_test_gt_roidb.pkl
done
400 validation roidb entries
Filtered 0 roidb entries: 3100 -> 3100
Filtered 0 roidb entries: 400 -> 400
2019-04-04 16:16:42.984263: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
Solving...
/home/luo/anaconda3/envs/flappbird/lib/python3.6/site-packages/tensorflow/python/ops/gradients_impl.py:100: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
  "Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
Loading initial model weights from data/imagenet_weights/res101.ckpt
Variables restored: resnet_v1_101/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/shortcut/weights:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/shortcut/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/shortcut/BatchNorm/beta:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/shortcut/weights:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/shortcut/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/shortcut/BatchNorm/beta:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/shortcut/weights:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/shortcut/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/shortcut/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/shortcut/weights:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/shortcut/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/shortcut/BatchNorm/beta:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Loaded.
Fix Resnet V1 layers..
Fixed.
2019-04-04 16:17:03.078635: W tensorflow/core/framework/allocator.cc:108] Allocation of 71442432 exceeds 10% of system memory.
2019-04-04 16:17:03.078653: W tensorflow/core/framework/allocator.cc:108] Allocation of 71442432 exceeds 10% of system memory.
2019-04-04 16:17:03.157909: W tensorflow/core/framework/allocator.cc:108] Allocation of 102760448 exceeds 10% of system memory.
2019-04-04 16:17:04.281898: W tensorflow/core/framework/allocator.cc:108] Allocation of 102760448 exceeds 10% of system memory.
2019-04-04 16:17:05.142933: W tensorflow/core/framework/allocator.cc:108] Allocation of 102760448 exceeds 10% of system memory.
iter: 20 / 110000, total loss: 1.226864
 >>> rpn_loss_cls: 0.124033
 >>> rpn_loss_box: 0.083634
 >>> loss_cls: 0.329475
 >>> loss_box: 0.307215
 >>> lr: 0.001000
speed: 38.009s / iter
iter: 40 / 110000, total loss: 1.041049
 >>> rpn_loss_cls: 0.121411
 >>> rpn_loss_box: 0.247878
 >>> loss_cls: 0.139931
 >>> loss_box: 0.149327
 >>> lr: 0.001000
speed: 37.712s / iter
iter: 60 / 110000, total loss: 1.060756
 >>> rpn_loss_cls: 0.135637
 >>> rpn_loss_box: 0.022396
 >>> loss_cls: 0.147341
 >>> loss_box: 0.372890
 >>> lr: 0.001000
speed: 37.601s / iter
iter: 80 / 110000, total loss: 0.826487
 >>> rpn_loss_cls: 0.055820
 >>> rpn_loss_box: 0.079405
 >>> loss_cls: 0.114159
 >>> loss_box: 0.194618
 >>> lr: 0.001000
speed: 37.545s / iter
ubuntu18 tensorflow faster_rcnn cpu训练自己数据集的更多相关文章
- TensorFlow训练MNIST数据集(1) —— softmax 单层神经网络
		
1.MNIST数据集简介 首先通过下面两行代码获取到TensorFlow内置的MNIST数据集: from tensorflow.examples.tutorials.mnist import inp ...
 - 使用py-faster-rcnn训练VOC2007数据集时遇到问题
		
使用py-faster-rcnn训练VOC2007数据集时遇到如下问题: 1. KeyError: 'chair' File "/home/sai/py-faster-rcnn/tools/ ...
 - TensorFlow CNN 測试CIFAR-10数据集
		
本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/50738311 1 CIFAR-10 数 ...
 - Scaled-YOLOv4 快速开始,训练自定义数据集
		
代码: https://github.com/ikuokuo/start-scaled-yolov4 Scaled-YOLOv4 代码: https://github.com/WongKinYiu/S ...
 - [翻译] 使用 TensorFlow 进行分布式训练
		
本文以两篇官方文档为基础来学习TensorFlow如何进行分布式训练,借此进入Strategy世界.
 - Fast RCNN  训练自己数据集 (1编译配置)
		
FastRCNN 训练自己数据集 (1编译配置) 转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ https:/ ...
 - 使用caffe训练mnist数据集 - caffe教程实战(一)
		
个人认为学习一个陌生的框架,最好从例子开始,所以我们也从一个例子开始. 学习本教程之前,你需要首先对卷积神经网络算法原理有些了解,而且安装好了caffe 卷积神经网络原理参考:http://cs231 ...
 - 实践详细篇-Windows下使用VS2015编译的Caffe训练mnist数据集
		
上一篇记录的是学习caffe前的环境准备以及如何创建好自己需要的caffe版本.这一篇记录的是如何使用编译好的caffe做训练mnist数据集,步骤编号延用上一篇 <实践详细篇-Windows下 ...
 - 『TensorFlow』分布式训练_其三_多机分布式
		
本节中的代码大量使用『TensorFlow』分布式训练_其一_逻辑梳理中介绍的概念,是成熟的多机分布式训练样例 一.基本概念 Cluster.Job.task概念:三者可以简单的看成是层次关系,tas ...
 
随机推荐
- F4NNIU 版本的标准电阻列表(2018-09-29 更新)
			
F4NNIU 版本的标准电阻列表(2018-09-29 更新) 值代码 电阻值 格式化值 单位 公差代码 公差 格式化值数字 描述 0RJ 0 0 R J 5% J0000 0R 5% (0RJ) 1 ...
 - NetCore 下集成SignalR并进行分组处理
			
Tips: 1.注意跟普通版Net.MVC的前端处理方式不一样,以前可以connection.start()后直接done里面再做逻辑处理,现在不行了 建议做法是在具体的业务Hub里重写OnConne ...
 - 推荐PHP程序员进阶的好书
			
<UNIX网络编程卷1(第3版)> <UNIX网络编程卷2(第2版)> <UNIX环境高级编程(第3版)> <UNIX编程艺术> <MySQL技术 ...
 - GOF23设计模式之观察者模式(observer)
			
一.观察者模式概述 观察者模式主要用于 1 :N 的通知.当一个对象(目标对象 Subject 或 Observable)的状态变化时,它需要通知一系列对象(观察者对象 Observer),令它们做出 ...
 - 1106 Lowest Price in Supply Chain
			
题意:略 思路:寻找树的叶结点中深度最低的,记录最低深度minDepth和具有相同最低深度的结点个数cnt. 代码: #include <cstdio> #include <cmat ...
 - 如果先装framework,后装IIS,想使用ASP.NET
			
32位系统在Dos下运行以下命令C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\aspnet_regiis.exe -i 开始安装 ASP.NET (2.0 ...
 - 使用DOSGi在OSGi环境下发布Web Services
			
前言 Apache CXF是一个开源的服务框架项目,而Distributed OSGi子项目提供了基于OSGi远程服务规范的分布式组件实现.它使用Web Services,HTTP上的SOAP手段实现 ...
 - 逻辑IO及当前模式读和一致性读的总结杂记
			
逻辑IO 逻辑读(确切是指db get之read不是consistentget之read):就是服务器进程从SGA上的buffercache(高速缓存)区域(先)根据SQL语句解析过程所获得的要操作的 ...
 - PHP中的traits简单理解
			
Traits可以理解为一组能被不同的类都能调用到的方法集合,但Traits不是类!不能被实例化.先来例子看下语法: ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 ...
 - C 语言 - 逻辑运算和短路求值
			
逻辑运算符: 运算符 含义 优先级 ! 逻辑非 高 && 逻辑与 中 || 逻辑或 低 举例: !a:如果 a 为真,!a 为假:如果 a 为 假,!a 为真 a && ...