(flappbird) luo@luo-ThinkPad-W540:tf-faster-rcnn$ ./experiments/scripts/train_faster_rcnn.sh 0 pascal_voc_0712 res101
+ set -e
+ export PYTHONUNBUFFERED=True
+ PYTHONUNBUFFERED=True
+ GPU_ID=0
+ DATASET=pascal_voc_0712
+ NET=res101
+ array=($@)
+ len=3
+ EXTRA_ARGS=
+ EXTRA_ARGS_SLUG=
+ case ${DATASET} in
+ TRAIN_IMDB=voc_2007_trainval+voc_2012_trainval
+ TEST_IMDB=voc_2007_test
+ STEPSIZE='[80000]'
+ ITERS=110000
+ ANCHORS='[8,16,32]'
+ RATIOS='[0.5,1,2]'
++ date +%Y-%m-%d_%H-%M-%S
+ LOG=experiments/logs/res101_voc_2007_trainval+voc_2012_trainval__res101.txt.2019-04-04_16-16-38
+ exec
++ tee -a experiments/logs/res101_voc_2007_trainval+voc_2012_trainval__res101.txt.2019-04-04_16-16-38
+ echo Logging output to experiments/logs/res101_voc_2007_trainval+voc_2012_trainval__res101.txt.2019-04-04_16-16-38
Logging output to experiments/logs/res101_voc_2007_trainval+voc_2012_trainval__res101.txt.2019-04-04_16-16-38
+ set +x
+ '[' '!' -f output/res101/voc_2007_trainval+voc_2012_trainval/default/res101_faster_rcnn_iter_110000.ckpt.index ']'
+ [[ ! -z '' ]]
+ CUDA_VISIBLE_DEVICES=0
+ time python ./tools/trainval_net.py --weight data/imagenet_weights/res101.ckpt --imdb voc_2007_trainval+voc_2012_trainval --imdbval voc_2007_test --iters 110000 --cfg experiments/cfgs/res101.yml --net res101 --set ANCHOR_SCALES '[8,16,32]' ANCHOR_RATIOS '[0.5,1,2]' TRAIN.STEPSIZE '[80000]'
Called with args:
Namespace(cfg_file='experiments/cfgs/res101.yml', imdb_name='voc_2007_trainval+voc_2012_trainval', imdbval_name='voc_2007_test', max_iters=110000, net='res101', set_cfgs=['ANCHOR_SCALES', '[8,16,32]', 'ANCHOR_RATIOS', '[0.5,1,2]', 'TRAIN.STEPSIZE', '[80000]'], tag='../output_model_2019/2019_04_04/', weight='data/imagenet_weights/res101.ckpt')
Using config:
{'ANCHOR_RATIOS': [0.5, 1, 2],
'ANCHOR_SCALES': [8, 16, 32],
'DATA_DIR': '/home/luo/TensorflowProject/tf-faster-rcnn/data',
'EXP_DIR': 'res101',
'MATLAB': 'matlab',
'MOBILENET': {'DEPTH_MULTIPLIER': 1.0,
'FIXED_LAYERS': 5,
'REGU_DEPTH': False,
'WEIGHT_DECAY': 4e-05},
'PIXEL_MEANS': array([[[102.9801, 115.9465, 122.7717]]]),
'POOLING_MODE': 'crop',
'POOLING_SIZE': 7,
'RESNET': {'FIXED_BLOCKS': 1, 'MAX_POOL': False},
'RNG_SEED': 3,
'ROOT_DIR': '/home/luo/TensorflowProject/tf-faster-rcnn',
'RPN_CHANNELS': 512,
'TEST': {'BBOX_REG': True,
'HAS_RPN': True,
'MAX_SIZE': 1000,
'MODE': 'nms',
'NMS': 0.3,
'PROPOSAL_METHOD': 'gt',
'RPN_NMS_THRESH': 0.7,
'RPN_POST_NMS_TOP_N': 300,
'RPN_PRE_NMS_TOP_N': 6000,
'RPN_TOP_N': 5000,
'SCALES': [600],
'SVM': False},
'TRAIN': {'ASPECT_GROUPING': False,
'BATCH_SIZE': 256,
'BBOX_INSIDE_WEIGHTS': [1.0, 1.0, 1.0, 1.0],
'BBOX_NORMALIZE_MEANS': [0.0, 0.0, 0.0, 0.0],
'BBOX_NORMALIZE_STDS': [0.1, 0.1, 0.2, 0.2],
'BBOX_NORMALIZE_TARGETS': True,
'BBOX_NORMALIZE_TARGETS_PRECOMPUTED': True,
'BBOX_REG': True,
'BBOX_THRESH': 0.5,
'BG_THRESH_HI': 0.5,
'BG_THRESH_LO': 0.0,
'BIAS_DECAY': False,
'DISPLAY': 20,
'DOUBLE_BIAS': False,
'FG_FRACTION': 0.25,
'FG_THRESH': 0.5,
'GAMMA': 0.1,
'HAS_RPN': True,
'IMS_PER_BATCH': 1,
'LEARNING_RATE': 0.001,
'MAX_SIZE': 1000,
'MOMENTUM': 0.9,
'PROPOSAL_METHOD': 'gt',
'RPN_BATCHSIZE': 256,
'RPN_BBOX_INSIDE_WEIGHTS': [1.0, 1.0, 1.0, 1.0],
'RPN_CLOBBER_POSITIVES': False,
'RPN_FG_FRACTION': 0.5,
'RPN_NEGATIVE_OVERLAP': 0.3,
'RPN_NMS_THRESH': 0.7,
'RPN_POSITIVE_OVERLAP': 0.7,
'RPN_POSITIVE_WEIGHT': -1.0,
'RPN_POST_NMS_TOP_N': 2000,
'RPN_PRE_NMS_TOP_N': 12000,
'SCALES': [600],
'SNAPSHOT_ITERS': 5000,
'SNAPSHOT_KEPT': 3,
'SNAPSHOT_PREFIX': 'res101_faster_rcnn',
'STEPSIZE': [80000],
'SUMMARY_INTERVAL': 180,
'TRUNCATED': False,
'USE_ALL_GT': True,
'USE_FLIPPED': True,
'USE_GT': False,
'WEIGHT_DECAY': 0.0001},
'USE_E2E_TF': True,
'USE_GPU_NMS': False}
Loaded dataset `voc_2007_trainval` for training
Set proposal method: gt
Appending horizontally-flipped training examples...
voc_2007_trainval gt roidb loaded from /home/luo/TensorflowProject/tf-faster-rcnn/data/cache/voc_2007_trainval_gt_roidb.pkl
done
Preparing training data...
done
Loaded dataset `voc_2012_trainval` for training
Set proposal method: gt
Appending horizontally-flipped training examples...
wrote gt roidb to /home/luo/TensorflowProject/tf-faster-rcnn/data/cache/voc_2012_trainval_gt_roidb.pkl
done
Preparing training data...
done
3100 roidb entries
Output will be saved to `/home/luo/TensorflowProject/tf-faster-rcnn/output/res101/voc_2007_trainval+voc_2012_trainval/../output_model_2019/2019_04_04/`
TensorFlow summaries will be saved to `/home/luo/TensorflowProject/tf-faster-rcnn/tensorboard/res101/voc_2007_trainval+voc_2012_trainval/../output_model_2019/2019_04_04/`
Loaded dataset `voc_2007_test` for training
Set proposal method: gt
Preparing training data...
wrote gt roidb to /home/luo/TensorflowProject/tf-faster-rcnn/data/cache/voc_2007_test_gt_roidb.pkl
done
400 validation roidb entries
Filtered 0 roidb entries: 3100 -> 3100
Filtered 0 roidb entries: 400 -> 400
2019-04-04 16:16:42.984263: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
Solving...
/home/luo/anaconda3/envs/flappbird/lib/python3.6/site-packages/tensorflow/python/ops/gradients_impl.py:100: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
"Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
Loading initial model weights from data/imagenet_weights/res101.ckpt
Variables restored: resnet_v1_101/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/shortcut/weights:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/shortcut/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/shortcut/BatchNorm/beta:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block1/unit_1/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block1/unit_2/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block1/unit_3/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/shortcut/weights:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/shortcut/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/shortcut/BatchNorm/beta:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block2/unit_1/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block2/unit_2/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block2/unit_3/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block2/unit_4/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/shortcut/weights:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/shortcut/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/shortcut/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_1/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_2/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_3/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_4/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_5/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_6/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_7/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_8/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_9/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_10/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_11/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_12/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_13/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_14/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_15/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_16/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_17/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_18/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_19/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_20/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_21/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_22/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block3/unit_23/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/shortcut/weights:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/shortcut/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/shortcut/BatchNorm/beta:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block4/unit_1/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block4/unit_2/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv1/weights:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv1/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv1/BatchNorm/beta:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv1/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv1/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv2/weights:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv2/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv2/BatchNorm/beta:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv2/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv2/BatchNorm/moving_variance:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv3/weights:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv3/BatchNorm/gamma:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv3/BatchNorm/beta:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv3/BatchNorm/moving_mean:0
Variables restored: resnet_v1_101/block4/unit_3/bottleneck_v1/conv3/BatchNorm/moving_variance:0
Loaded.
Fix Resnet V1 layers..
Fixed.
2019-04-04 16:17:03.078635: W tensorflow/core/framework/allocator.cc:108] Allocation of 71442432 exceeds 10% of system memory.
2019-04-04 16:17:03.078653: W tensorflow/core/framework/allocator.cc:108] Allocation of 71442432 exceeds 10% of system memory.
2019-04-04 16:17:03.157909: W tensorflow/core/framework/allocator.cc:108] Allocation of 102760448 exceeds 10% of system memory.
2019-04-04 16:17:04.281898: W tensorflow/core/framework/allocator.cc:108] Allocation of 102760448 exceeds 10% of system memory.
2019-04-04 16:17:05.142933: W tensorflow/core/framework/allocator.cc:108] Allocation of 102760448 exceeds 10% of system memory.
iter: 20 / 110000, total loss: 1.226864
>>> rpn_loss_cls: 0.124033
>>> rpn_loss_box: 0.083634
>>> loss_cls: 0.329475
>>> loss_box: 0.307215
>>> lr: 0.001000
speed: 38.009s / iter
iter: 40 / 110000, total loss: 1.041049
>>> rpn_loss_cls: 0.121411
>>> rpn_loss_box: 0.247878
>>> loss_cls: 0.139931
>>> loss_box: 0.149327
>>> lr: 0.001000
speed: 37.712s / iter
iter: 60 / 110000, total loss: 1.060756
>>> rpn_loss_cls: 0.135637
>>> rpn_loss_box: 0.022396
>>> loss_cls: 0.147341
>>> loss_box: 0.372890
>>> lr: 0.001000
speed: 37.601s / iter
iter: 80 / 110000, total loss: 0.826487
>>> rpn_loss_cls: 0.055820
>>> rpn_loss_box: 0.079405
>>> loss_cls: 0.114159
>>> loss_box: 0.194618
>>> lr: 0.001000
speed: 37.545s / iter

ubuntu18 tensorflow faster_rcnn cpu训练自己数据集的更多相关文章

  1. TensorFlow训练MNIST数据集(1) —— softmax 单层神经网络

    1.MNIST数据集简介 首先通过下面两行代码获取到TensorFlow内置的MNIST数据集: from tensorflow.examples.tutorials.mnist import inp ...

  2. 使用py-faster-rcnn训练VOC2007数据集时遇到问题

    使用py-faster-rcnn训练VOC2007数据集时遇到如下问题: 1. KeyError: 'chair' File "/home/sai/py-faster-rcnn/tools/ ...

  3. TensorFlow CNN 測试CIFAR-10数据集

    本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/50738311 1 CIFAR-10 数 ...

  4. Scaled-YOLOv4 快速开始,训练自定义数据集

    代码: https://github.com/ikuokuo/start-scaled-yolov4 Scaled-YOLOv4 代码: https://github.com/WongKinYiu/S ...

  5. [翻译] 使用 TensorFlow 进行分布式训练

    本文以两篇官方文档为基础来学习TensorFlow如何进行分布式训练,借此进入Strategy世界.

  6. Fast RCNN 训练自己数据集 (1编译配置)

    FastRCNN 训练自己数据集 (1编译配置) 转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ https:/ ...

  7. 使用caffe训练mnist数据集 - caffe教程实战(一)

    个人认为学习一个陌生的框架,最好从例子开始,所以我们也从一个例子开始. 学习本教程之前,你需要首先对卷积神经网络算法原理有些了解,而且安装好了caffe 卷积神经网络原理参考:http://cs231 ...

  8. 实践详细篇-Windows下使用VS2015编译的Caffe训练mnist数据集

    上一篇记录的是学习caffe前的环境准备以及如何创建好自己需要的caffe版本.这一篇记录的是如何使用编译好的caffe做训练mnist数据集,步骤编号延用上一篇 <实践详细篇-Windows下 ...

  9. 『TensorFlow』分布式训练_其三_多机分布式

    本节中的代码大量使用『TensorFlow』分布式训练_其一_逻辑梳理中介绍的概念,是成熟的多机分布式训练样例 一.基本概念 Cluster.Job.task概念:三者可以简单的看成是层次关系,tas ...

随机推荐

  1. Tomcat(64位)免安装版的环境安装与配置

    本篇博客主要介绍Tomcat(64位)免安装版的环境安装与配置,该篇文章同样适合于32位Tomcat免安装版的环境安装与配置. 该篇博客中的大部分内容同百度经验中的<出现unable to op ...

  2. java 简洁的分层实现

    1.分页实现 分页实现是将所有查询结果保存在session对象或集合中,翻页时从session对象或集合中取出一页所需的数据显示.但是这种方法有两个最主要的缺点:一是用户看到的可能是过期数据:二是如果 ...

  3. RK3288 dts和dtsi介绍

    Device Tree 是一种描述硬件的数据结构,它起源于 OpenFirmware(OF).在 Linux2.6 中,ARM 架构的板机硬件细节过多地被硬编码在 arch/arm/plat-xxx ...

  4. RedHat6.5用ISO配置yum源

    CentOS自带强大的yum功能,默认为从网上自动下载rpm包,对于网速不太给力或者没有网络的情况下需要用的话就不是很方便,很多软件尤其是服务器上的软件我们么有必要追求最新,稳定性最重要,这里我们用C ...

  5. licode从客户端到连上信令服务器流程

    var config = {audio: true, video: true, data: true, screen: screen, videoSize: [640, 480, 640, 480], ...

  6. php 操作提示框

    /** * 跳转 * @param type $msg * @param type $url */ protected function jump($msg, $url) { $html = < ...

  7. Hibernate学习8—Hibernate 映射关系(多对多)

    第二节:Hibernate 多对多映射关系实现   比如学生和课程是多对多的关系: 一个学生可以选多个课程: 一个课程可以被多个学生选中,所以是多对多的关系:   1,多对多单向实现: 单向关系: 这 ...

  8. 杂项-DB:内存数据库

    ylbtech-杂项-DB:内存数据库 内存数据库,顾名思义就是将数据放在内存中直接操作的数据库.相对于磁盘,内存的数据读写速度要高出几个数量级,将数据保存在内存中相比从磁盘上访问能够极大地提高应用的 ...

  9. Required String parameter 'id' is not present

    问题详情:       简单的说,我就是通过ajax发起了一个post请求到后台,但是后台没有收到请求发过去的参数,并且还报了这样的错误.       错误描述告诉我们,请求参数里面并没有存在id.我 ...

  10. Tkinter Text(文本)

         Tkinter Text(文本): 文本小部件提供先进的功能,让您编辑多行文本格式,如改变其颜色和字体的方式显示.   文本小部件提供先进的功能,让您编辑多行文本格式,如改变其颜色和字体的方 ...