一、前言

concurrentHashMap与ConcurrentSkipListMap性能测试 
在4线程1.6万数据的条件下,ConcurrentHashMap 存取速度是ConcurrentSkipListMap 的4倍左右。

但ConcurrentSkipListMap有几个ConcurrentHashMap 不能比拟的优点:

  1. ConcurrentSkipListMap 的key是有序的。
  2. ConcurrentSkipListMap 支持更高的并发。ConcurrentSkipListMap 
    的存取时间是log(N),和线程数几乎无关。也就是说在数据量一定的情况下,并发的线程越多,ConcurrentSkipListMap越能体现出他的优势。

二、使用建议

在非多线程的情况下,应当尽量使用TreeMap。此外对于并发性相对较低的并行程序可以使用Collections.synchronizedSortedMap将TreeMap进行包装,也可以提供较好的效率。对于高并发程序,应当使用ConcurrentSkipListMap,能够提供更高的并发度。

所以在多线程程序中,如果需要对Map的键值进行排序时,请尽量使用ConcurrentSkipListMap,可能得到更好的并发度。 
注意,调用ConcurrentSkipListMap的size时,由于多个线程可以同时对映射表进行操作,所以映射表需要遍历整个链表才能返回元素个数,这个操作是个O(log(n))的操作。

三、什么是SkipList

跳表:一般的链表由于无法进行随机访问,所以查找性能是log(n)。所以就想在普通链表的基础上增加层次结构的功能,利用查找。

左上为头节点,每个节点有 down 和 right 的两个指针。

查找的时候一步一步从最上层缩减范围到下层,从而找到节点。

插入时具有随机性,插入的节点,随机产生一个层数,来插入,这个随机值第0层(也就是最有一层)的概率最大,值越大概率越小。

那为什么要使用跳表呢?

跳表和红黑树的性能相当,最主要的优势就是当调整(插入或删除)时,红黑树需要使用旋转来维护平衡性,这个操作需要动多个节点,在并发时候很难控制。而跳表插入或删除时只需定位后插入,插入时只需添加插入的那个节点及其多个层的复制,以及定位和插入的原子性维护。所以它更加可以利用CAS操作来进行无锁编程。


Skip list(跳表)是一种可以代替平衡树的数据结构,默认是按照Key值升序的。Skip list让已排序的数据分布在多层链表中,以0-1随机数决定一个数据的向上攀升与否,通过“空间来换取时间”的一个算法,在每个节点中增加了向前的指针,在插入、删除、查找时可以忽略一些不可能涉及到的结点,从而提高了效率。

从概率上保持数据结构的平衡比显示的保持数据结构平衡要简单的多。对于大多数应用,用Skip list要比用树算法相对简单。由于Skip list比较简单,实现起来会比较容易,虽然和平衡树有着相同的时间复杂度(O(logn)),但是skip list的常数项会相对小很多。Skip list在空间上也比较节省。一个节点平均只需要1.333个指针(甚至更少)。

 
图1-1 Skip list结构图(以7,14,21,32,37,71,85序列为例)

Skip list的性质

  1. 由很多层结构组成,level是通过一定的概率随机产生的。
  2. 每一层都是一个有序的链表,默认是升序,也可以根据创建映射时所提供的Comparator进行排序,具体取决于使用的构造方法。
  3. 最底层(Level 1)的链表包含所有元素。
  4. 如果一个元素出现在Level i 的链表中,则它在Level i 之下的链表也都会出现。
  5. 每个节点包含两个指针,一个指向同一链表中的下一个元素,一个指向下面一层的元素。

四、什么是ConcurrentSkipListMap

ConcurrentSkipListMap提供了一种线程安全的并发访问的排序映射表。内部是SkipList(跳表)结构实现,在理论上能够在O(log(n))时间内完成查找、插入、删除操作。

注意,调用ConcurrentSkipListMap的size时,由于多个线程可以同时对映射表进行操作,所以映射表需要遍历整个链表才能返回元素个数,这个操作是个O(log(n))的操作。

ConcurrentSkipListMap存储结构 

ConcurrentSkipListMap存储结构图

跳跃表(SkipList):(如上图所示)

  1. 多条链构成,是关键字升序排列的数据结构;
  2. 包含多个级别,一个head引用指向最高的级别,最低(底部)的级别,包含所有的key;
  3. 每一个级别都是其更低级别的子集,并且是有序的;
  4. 如果关键字 key在 级别level=i中出现,则,level<=i的链表中都会包含该关键字key;

五、接口说明

Map:将键映射到值的对象。一个映射不能包含重复的键;每个键最多只能映射到一个值。 
方法有:size(),isEmpty(),containsKey(Object),containsValue(Object),get(Object),put(K,V),remove(Obj),putAll(Map),clear(),keySet(),Collection values(),entrySet(). 
SortedMap:进一步提供关于键的总体排序 的 Map。该映射是根据其键的自然顺序进行排序的,或者根据通常在创建有序映射时提供的 Comparator 进行排序。对有序映射的 collection 视图(由 entrySet、keySet 和 values 方法返回)进行迭代时,此顺序就会反映出来。要采用此排序方式,还需要提供一些其他操作(此接口是 SortedSet 的对应映射)。 
方法:comparator(),firstKey() ,lastKey() ,headMap(K toKey)返回此映射的部分视图,其键值严格小于 toKey。subMap(K fromKey, K toKey) 返回此映射的部分视图,其键值的范围从 fromKey(包括)到 toKey(不包括)。tailMap(K fromKey) 返回此映射的部分视图,其键大于等于 fromKey。 
注意,sub之类的都是[~~~~)。 
NavigableMap:扩展的 SortedMap,具有了针对给定搜索目标返回最接近匹配项的导航方法。方法 lowerEntry、floorEntry、ceilingEntry 和 higherEntry 分别返回与小于、小于等于、大于等于、大于给定键的键关联的 Map.Entry 对象,如果不存在这样的键,则返回 null。类似地,方法 lowerKey、floorKey、ceilingKey 和 higherKey 只返回关联的键。所有这些方法是为查找条目而不是遍历条目而设计的。

可以按照键的升序或降序访问和遍历 NavigableMap。descendingMap 方法返回映射的一个视图,该视图表示的所有关系方法和方向方法都是逆向的。升序操作和视图的性能很可能比降序操作和视图的性能要好。subMap、headMap 和 tailMap 方法与名称相似的 SortedMap 方法的不同之处在于:可以接受用于描述是否包括(或不包括)下边界和上边界的附加参数。任何 NavigableMap 的 Submap 必须实现 NavigableMap 接口。

此外,此接口还定义了 firstEntry、pollFirstEntry、lastEntry 和 pollLastEntry 方法,它们返回和/或移除最小和最大的映射关系(如果存在),否则返回 null。

ConcurrentMap:提供其他原子 putIfAbsent、remove、replace 方法的 Map。 
ConcurrentNavigableMap:支持 NavigableMap 操作,且以递归方式支持其可导航子映射的 ConcurrentMap。


ConcurrentSkipListMap主要用到了Node和Index两种节点的存储方式,通过volatile关键字实现了并发的操作

static final class Node<K,V> {
final K key;
volatile Object value;//value值
volatile Node<K,V> next;//next引用
……
}
static class Index<K,V> {
final Node<K,V> node;
final Index<K,V> down;//downy引用
volatile Index<K,V> right;//右边引用
……
}

ConcurrentSkipListMap的查找

通过SkipList的方式进行查找操作:(下图以“查找91”进行说明:)

红色虚线,表示查找的路径,蓝色向右箭头表示right引用;黑色向下箭头表示down引用;

/get方法,通过doGet操作实现

public V get(Object key) {
return doGet(key);
}
//doGet的实现
private V doGet(Object okey) {
Comparable<? super K> key = comparable(okey);
Node<K,V> bound = null;
Index<K,V> q = head;//把头结点作为当前节点的前驱节点
Index<K,V> r = q.right;//前驱节点的右节点作为当前节点
Node<K,V> n;
K k;
int c;
for (;;) {//遍历
Index<K,V> d;
// 依次遍历right节点
if (r != null && (n = r.node) != bound && (k = n.key) != null) {
if ((c = key.compareTo(k)) > 0) {//由于key都是升序排列的,所有当前关键字大于所要查找的key时继续向右遍历
q = r;
r = r.right;
continue;
} else if (c == 0) {
//如果找到了相等的key节点,则返回该Node的value如果value为空可能是其他并发delete导致的,于是通过另一种
//遍历findNode的方式再查找
Object v = n.value;
return (v != null)? (V)v : getUsingFindNode(key);
} else
bound = n;
}
//如果一个链表中right没能找到key对应的value,则调整到其down的引用处继续查找
if ((d = q.down) != null) {
q = d;
r = d.right;
} else
break;
}
// 如果通过上面的遍历方式,还没能找到key对应的value,再通过Node.next的方式进行查找
for (n = q.node.next; n != null; n = n.next) {
if ((k = n.key) != null) {
if ((c = key.compareTo(k)) == 0) {
Object v = n.value;
return (v != null)? (V)v : getUsingFindNode(key);
} else if (c < 0)
break;
}
}
return null;
}

ConcurrentSkipListMap的删除

通过SkipList的方式进行删除操作:(下图以“删除23”进行说明:)


红色虚线,表示查找的路径,蓝色向右箭头表示right引用;黑色向下箭头表示down引用;

//remove操作,通过doRemove实现,把所有level中出现关键字key的地方都delete掉
public V remove(Object key) {
return doRemove(key, null);
}
final V doRemove(Object okey, Object value) {
Comparable<? super K> key = comparable(okey);
for (;;) {
Node<K,V> b = findPredecessor(key);//得到key的前驱(就是比key小的最大节点)
Node<K,V> n = b.next;//前驱节点的next引用
for (;;) {//遍历
if (n == null)//如果next引用为空,直接返回
return null;
Node<K,V> f = n.next;
if (n != b.next) // 如果两次获得的b.next不是相同的Node,就跳转到第一层循环重新获得b和n
break;
Object v = n.value;
if (v == null) { // 当n被其他线程delete的时候,其value==null,此时做辅助处理,并重新获取b和n
n.helpDelete(b, f);
break;
}
if (v == n || b.value == null) // 当其前驱被delet的时候直接跳出,重新获取b和n
break;
int c = key.compareTo(n.key);
if (c < 0)
return null;
if (c > 0) {//当key较大时就继续遍历
b = n;
n = f;
continue;
}
if (value != null && !value.equals(v))
return null;
if (!n.casValue(v, null))
break;
if (!n.appendMarker(f) || !b.casNext(n, f))//casNext方法就是通过比较和设置b(前驱)的next节点的方式来实现删除操作
findNode(key); // 通过尝试findNode的方式继续find
else {
findPredecessor(key); // Clean index
if (head.right == null) //如果head的right引用为空,则表示不存在该level
tryReduceLevel();
}
return (V)v;
}
}
}

ConcurrentSkipListMap的插入

通过SkipList的方式进行插入操作:(下图以“添加55”的两种情况,进行说明:)


在level=2(该level存在)的情况下添加55的图示:只需在level<=2的合适位置插入55即可 

在level=4(该level不存在,图示level4是新建的)的情况下添加55的情况:首先新建level4,然后在level<=4的合适位置插入55

//put操作,通过doPut实现
public V put(K key, V value) {
if (value == null)
throw new NullPointerException();
return doPut(key, value, false);
}
private V doPut(K kkey, V value, boolean onlyIfAbsent) {
Comparable<? super K> key = comparable(kkey);
for (;;) {
Node<K,V> b = findPredecessor(key);//前驱
Node<K,V> n = b.next;
//定位的过程就是和get操作相似
for (;;) {
if (n != null) {
Node<K,V> f = n.next;
if (n != b.next) // 前后值不一致的情况下,跳转到第一层循环重新获得b和n
break;;
Object v = n.value;
if (v == null) { // n被delete的情况下
n.helpDelete(b, f);
break;
}
if (v == n || b.value == null) // b 被delete的情况,重新获取b和n
break;
int c = key.compareTo(n.key);
if (c > 0) {
b = n;
n = f;
continue;
}
if (c == 0) {
if (onlyIfAbsent || n.casValue(v, value))
return (V)v;
else
break; // restart if lost race to replace value
}
// else c < 0; fall through
}
Node<K,V> z = new Node<K,V>(kkey, value, n);
if (!b.casNext(n, z))
break; // restart if lost race to append to b
int level = randomLevel();//得到一个随机的level作为该key-value插入的最高level
if (level > 0)
insertIndex(z, level);//进行插入操作
return null;
}
}
} /**
* 获得一个随机的level值
*/
private int randomLevel() {
int x = randomSeed;
x ^= x << 13;
x ^= x >>> 17;
randomSeed = x ^= x << 5;
if ((x & 0x8001) != 0) // test highest and lowest bits
return 0;
int level = 1;
while (((x >>>= 1) & 1) != 0) ++level;
return level;
}
//执行插入操作:如上图所示,有两种可能的情况:
//1.当level存在时,对level<=n都执行insert操作
//2.当level不存在(大于目前的最大level)时,首先添加新的level,然后在执行操作1
private void insertIndex(Node<K,V> z, int level) {
HeadIndex<K,V> h = head;
int max = h.level;
if (level <= max) {//情况1
Index<K,V> idx = null;
for (int i = 1; i <= level; ++i)//首先得到一个包含1~level个级别的down关系的链表,最后的inx为最高level
idx = new Index<K,V>(z, idx, null);
addIndex(idx, h, level);//把最高level的idx传给addIndex方法
} else { // 情况2 增加一个新的级别
level = max + 1;
Index<K,V>[] idxs = (Index<K,V>[])new Index[level+1];
Index<K,V> idx = null;
for (int i = 1; i <= level; ++i)//该步骤和情况1类似
idxs[i] = idx = new Index<K,V>(z, idx, null);
HeadIndex<K,V> oldh;
int k;
for (;;) {
oldh = head;
int oldLevel = oldh.level;
if (level <= oldLevel) { // lost race to add level
k = level;
break;
}
HeadIndex<K,V> newh = oldh;
Node<K,V> oldbase = oldh.node;
for (int j = oldLevel+1; j <= level; ++j)
newh = new HeadIndex<K,V>(oldbase, newh, idxs[j], j);//创建新的
if (casHead(oldh, newh)) {
k = oldLevel;
break;
}
}
addIndex(idxs[k], oldh, k);
}
}
/**
*在1~indexlevel层中插入数据
*/
private void addIndex(Index<K,V> idx, HeadIndex<K,V> h, int indexLevel) {
// insertionLevel 代表要插入的level,该值会在indexLevel~1间遍历一遍
int insertionLevel = indexLevel;
Comparable<? super K> key = comparable(idx.node.key);
if (key == null) throw new NullPointerException();
// 和get操作类似,不同的就是查找的同时在各个level上加入了对应的key
for (;;) {
int j = h.level;
Index<K,V> q = h;
Index<K,V> r = q.right;
Index<K,V> t = idx;
for (;;) {
if (r != null) {
Node<K,V> n = r.node;
// compare before deletion check avoids needing recheck
int c = key.compareTo(n.key);
if (n.value == null) {
if (!q.unlink(r))
break;
r = q.right;
continue;
}
if (c > 0) {
q = r;
r = r.right;
continue;
}
}
if (j == insertionLevel) {//在该层level中执行插入操作
// Don't insert index if node already deleted
if (t.indexesDeletedNode()) {
findNode(key); // cleans up
return;
}
if (!q.link(r, t))//执行link操作,其实就是inset的实现部分
break; // restart
if (--insertionLevel == 0) {
// need final deletion check before return
if (t.indexesDeletedNode())
findNode(key);
return;
}
}
if (--j >= insertionLevel && j < indexLevel)//key移动到下一层level
t = t.down;
q = q.down;
r = q.right;
}
}
}

参考: 
集合框架 Map篇(5)—-ConcurrentSkipListMap http://hi.baidu.com/yao1111yao/item/0f3008163c4b82c938cb306d 
Java里多个Map的性能比较(TreeMap、HashMap、ConcurrentSkipListMap) http://blog.hongtium.com/java-map-skiplist/ 
跳表SkipList的原理和实现 http://imtinx.iteye.com/blog/1291165 
原理分析及源码解析 http://blog.csdn.net/jy3161286/article/details/22809913 
“JUC集合”05之 ConcurrentSkipListMap http://www.cnblogs.com/skywang12345/p/3498556.html

转载自:http://blog.csdn.net/guangcigeyun/article/details/8278349

3.3.7 跳表 SkipList的更多相关文章

  1. 跳表SkipList

    原文:http://www.cnblogs.com/xuqiang/archive/2011/05/22/2053516.html 跳表SkipList   1.聊一聊跳表作者的其人其事 2. 言归正 ...

  2. 跳表 SkipList

    跳表是平衡树的一种替代的数据结构,和红黑树不同,跳表对树的平衡的实现是基于一种随机化的算法,这样就使得跳表的插入和删除的工作比较简单.     跳表是一种复杂的链表,在简单链表的节点信息之上又增加了额 ...

  3. 存储系统的基本数据结构之一: 跳表 (SkipList)

    在接下来的系列文章中,我们将介绍一系列应用于存储以及IO子系统的数据结构.这些数据结构相互关联又有着巨大的区别,希望我们能够不辱使命的将他们分门别类的介绍清楚.本文为第一节,介绍一个简单而又有用的数据 ...

  4. 跳表(SkipList)设计与实现(Java)

    微信搜一搜「bigsai」关注这个有趣的程序员 文章已收录在 我的Github bigsai-algorithm 欢迎star 前言 跳表是面试常问的一种数据结构,它在很多中间件和语言中得到应用,我们 ...

  5. [转载] 跳表SkipList

    原文: http://www.cnblogs.com/xuqiang/archive/2011/05/22/2053516.html leveldb中memtable的思想本质上是一个skiplist ...

  6. 跳表(skiplist)Python实现

    # coding=utf-8 # 跳表的Python实现 import random # 最高层数设置为4 MAX_LEVEL = 4 def randomLevel(): ""& ...

  7. C语言跳表(skiplist)实现

    一.简介 跳表(skiplist)是一个非常优秀的数据结构,实现简单,插入.删除.查找的复杂度均为O(logN).LevelDB的核心数据结构是用跳表实现的,redis的sorted set数据结构也 ...

  8. 跳表(SkipList)原理篇

    1.什么是跳表? 维基百科:跳表是一种数据结构.它使得包含n个元素的有序序列的查找和插入操作的平均时间复杂度都是 O(logn),优于数组的 O(n)复杂度.快速的查询效果是通过维护一个多层次的链表实 ...

  9. redis笔记_源码_跳表skiplist

    参照:https://juejin.im/post/57fa935b0e3dd90057c50fbc#comment http://redisbook.com/preview/skiplist/dat ...

随机推荐

  1. java代码----I/O流写出整型,浮点型,

    总结: package com.a.b; import java.io.*; public class fdsf { public static void main(String[] args) th ...

  2. 01:Sysbench 基准压测 IO篇

    line:V1.1 mail: gczheng@139.com date: 2017-11-17 一.Sysench测试前准备 1.1.压测环境 配置 信息 主机 Dell PowerEdge R73 ...

  3. htm标签的语意

    标签名 英文全拼 标签语意 div division 分割 span span 范围 ol ordered list 排序列表 ul unordered list 不排序列表 li list item ...

  4. java爬虫简单实例

    爬虫的实质就是打开网页源代码进行匹配查找,然后获取查找到的结果./** 获取* 将正则规则进行对象的封装. * Pattern p = Pattern.compile("a*b") ...

  5. ListView下拉刷新,上拉自动加载更多

    下拉刷新,Android中非常普遍的功能.为了方便便重写的ListView来实现下拉刷新,同时添加了上拉自动加载更多的功能.设计最初是参考开源中国的Android客户端源码.先看示例图.       ...

  6. 查询oracle安装过补丁没有

    [oracle@root ~]$ opatch lsinventoryInvoking OPatch 10.2.0.1.0 Oracle interim Patch Installer version ...

  7. 查看进程id

    #!/usr/bin/env python # encoding: utf-8  # Date: 2018/6/16 from multiprocessing import Processimport ...

  8. Vue基础知识之指令和生命周期(一)

    优点:轻量易学,灵活. 核心:通过尽可能简单的API来实现响应的数据绑定和组合的视图组件. 1.数据绑定:数据改变,驱动视图的自动更新. 2.视图组件化:把整个网页拆分成一个个区块,每个区块都可以看成 ...

  9. 证件照制作:使用PS打印一寸照片

    1. 打开文件,文件-打开-选择要操作的图片: 2. 修改图片尺寸,图像-图像大小,弹出对话框后,设置 宽度:2.5cm,高度:3.5cm,分辨率:300 像素/英寸: 3. 为要打印的照片设置白边, ...

  10. Python实践练习:电话号码和 E-mail 地址提取程序

    题目: 假设你有一个无聊的任务,要在一篇长的网页或文章中,找出所有电话号码和邮件地址.如果手动翻页,可能需要查找很长时间.如果有一个程序,可以在剪贴板的文本中查找电话号码和 E-mail 地址,那你就 ...