收集hive优化解决方案
hive的优化问题
1。启动一次JOB尽可能多做事,尽量减少job的数量。能重用就重用,要设计好的模型。
2。合理设置reduce个数,reduce个数过多,会造成大量小文件问题。
3。使用hive.exec.parallel参数控制在同一个sql中的不同的job是否可以同时运行,提高作业的并发
4。注意join的使用,表小用map join,否则用普通reduce join,hive会将前面的表数据装入内存,因此可将数据少的表放在数据多的表之前,减少内存资源消耗。
5。注意小文件的问题
在hive里有两种比较常见的处理办法
第一是使用Combinefileinputformat,将多个小文件打包作为一个整体的inputsplit,减少map任务数
set mapred.max.split.size=256000000;
set mapred.min.split.size.per.node=256000000
set Mapred.min.split.size.per.rack=256000000
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat
第二是设置hive参数,将额外启动一个MR Job打包小文件
hive.merge.mapredfiles = false 是否合并 Reduce 输出文件,默认为 False
hive.merge.size.per.task = 256*1000*1000 合并文件的大小
6。注意数据倾斜问题
在hive里比较常用的处理办法
第一种方法
通过hive.groupby.skewindata=true控制生成两个MR Job,第一个MR Job Map的输出结果随机分配到reduce做次预汇总,减少某些key值条数过多某些key条数过小造成的数据倾斜问题
第二种方法
通过hive.map.aggr = true(默认为true)
在Map端做combiner,假如map各条数据基本上不一样, 聚合没什么意义,做combiner反而画蛇添足,
hive里也考虑的比较周到
通过参数 hive.groupby.mapaggr.checkinterval = 100000 (默认)
hive.map.aggr.hash.min.reduction=0.5(默认),
预先取100000条数据聚合,如果聚合后的条数/100000>0.5,则不再聚合
7。善用multi insert,union all
multi insert适合基于同一个源表按照不同逻辑不同粒度处理插入不同表的场景,做到只需要扫描源表一次,job个数不变,减少源表扫描次数
union all用好,可减少表的扫描次数,减少job的个数,通常预先按不同逻辑不同条件生成的查询union all后,再统一group by计算,不同表的union all相当于multiple inputs,同一个表的union all,相当map一次输出多条
8。参数设置的调优
集群参数种类繁多,举个例子比如
可针对特定job设置特定参数,比如jvm重用,reduce copy线程数量设置(适合map较快,输出量较大)
如果任务数多且小,比如在一分钟之内完成,减少task数量以减少任务初始化的消耗。可以通过配置JVM重用选项减少task的消耗
#索引在 Hive 中有一些限制。如何克服这个问题呢?
您可以使用 org.apache.hadoop.hive.ql.index.compact.CompactIndexHandler 函数在 Hive 中创建索引。Hive 和缓慢变化的维度并不总是可能实现。但是如果构建暂存表和使用一定量的连接(而且计划添加一个新表,转储旧表,并且只保留最新、更新表用于比较),则可能实现它们。
数据倾斜的解决方案
1.参数调节:
hive.map.aggr=true
Map 端部分聚合,相当于Combiner
hive.groupby.skewindata=true
有数据倾斜的时候进行负载均衡,当选项设定为 true,生成的查询计划会有两个 MR Job。第一个 MR Job 中,Map 的输出结果集合会随机分布到 Reduce 中,每个 Reduce 做部分聚合操作,并输出结果,这样处理的结果是相同的 Group By Key 有可能被分发到不同的 Reduce 中,从而达到负载均衡的目的;第二个 MR Job 再根据预处理的数据结果按照 Group By Key 分布到 Reduce 中(这个过程可以保证相同的 Group By Key 被分布到同一个 Reduce 中),最后完成最终的聚合操作。
2. SQL语句调节:
如何Join:
关于驱动表的选取,选用join key分布最均匀的表作为驱动表
做好列裁剪和filter操作,以达到两表做join的时候,数据量相对变小的效果。
大小表Join:
使用map join让小的维度表(1000条以下的记录条数) 先进内存。在map端完成reduce.
大表Join大表:
把空值的key变成一个字符串加上随机数,把倾斜的数据分到不同的reduce上,由于null值关联不上,处理后并不影响最终结果。
count distinct大量相同特殊值
count distinct时,将值为空的情况单独处理,如果是计算count distinct,可以不用处理,直接过滤,在最后结果中加1。如果还有其他计算,需要进行group by,可以先将值为空的记录单独处理,再和其他计算结果进行union。
group by维度过小:
采用sum() group by的方式来替换count(distinct)完成计算。
特殊情况特殊处理:
在业务逻辑优化效果的不大情况下,有些时候是可以将倾斜的数据单独拿出来处理。最后union回去。
摘录博文:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842860.html
收集hive优化解决方案的更多相关文章
- Hive优化(整理版)
1. 概述 1.1 hive的特征: 可以通过SQL轻松访问数据的工具,从而实现数据仓库任务,如提取/转换/加载(ETL),报告和数据分析: 它可以使已经存储的数据结构化: 可以直接访问存储在Apac ...
- (hive)hive优化(转载)
1. 概述 1.1 hive的特征: 可以通过SQL轻松访问数据的工具,从而实现数据仓库任务,如提取/转换/加载(ETL),报告和数据分析: 它可以使已经存储的数据结构化: 可以直接访问存储在Apac ...
- Hive优化案例
1.Hadoop计算框架的特点 数据量大不是问题,数据倾斜是个问题. jobs数比较多的作业效率相对比较低,比如即使有几百万的表,如果多次关联多次汇总,产生十几个jobs,耗时很长.原因是map re ...
- 大数据开发实战:Hive优化实战3-大表join大表优化
5.大表join大表优化 如果Hive优化实战2中mapjoin中小表dim_seller很大呢?比如超过了1GB大小?这种就是大表join大表的问题.首先引入一个具体的问题场景,然后基于此介绍各自优 ...
- 【转】Hive优化总结
优化时,把hive sql当做map reduce程序来读,会有意想不到的惊喜. 理解Hadoop的核心能力,是hive优化的根本.这是这一年来,项目组所有成员宝贵的经验总结. 长期观察hadoo ...
- Hive优化-大表join大表优化
Hive优化-大表join大表优化 5.大表join大表优化 如果Hive优化实战2中mapjoin中小表dim_seller很大呢?比如超过了1GB大小?这种就是大表join大表的问题.首先引入一个 ...
- Hive优化(面试宝典)(详细的九个优化)
Hive优化(面试宝典) 1.1 hive的随机抓取策略 理论上来说,Hive中的所有sql都需要进行mapreduce,但是hive的抓取策略帮我们 省略掉了这个过程,把切片split的过程提前帮我 ...
- Hive 12、Hive优化
要点:优化时,把hive sql当做map reduce程序来读,会有意想不到的惊喜. 理解hadoop的核心能力,是hive优化的根本. 长期观察hadoop处理数据的过程,有几个显著的特征: 1. ...
- hive优化之——控制hive任务中的map数和reduce数
一. 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务.主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文 ...
随机推荐
- 编码解码--url编码解码
url编码解码,又叫百分号编码,是统一资源定位(URL)编码方式.URL地址(常说网址)规定了常用地数字,字母可以直接使用,另外一批作为特殊用户字符也可以直接用(/,:@等),剩下的其它所有字符必须通 ...
- 20145216史婧瑶《Java程序设计》第一周学习总结
20145216 <Java程序设计>第1周学习总结 教材学习内容总结 第一章 Java平台概论 1.1 Java不只是语言 1.Java三大平台:Java SE.Java EE与Java ...
- 学Git,用Git ①
本月开始接触到Git版本管理工具,觉得很有意思,在这里总结一下学习Git的一些心得体会. 要在Mac上完整的使用git进行版本管理,需要熟悉Mac终端操作命令和Git操作命令两种命令,索性两种命令加在 ...
- 如何使一个openwrt下的软件开机自启动
条件有三: 1.需要在软件包的Makefile中添加宏定义Package/$(package-name)/preinst和Package/$(package-name)/prerm define Pa ...
- UVA 814 The Letter Carrier's Rounds(JAVA基础map)
题解:就是按照题目模拟就好 但是这个题目让我发现了我Java里面许多问题 具体看代码,但是还是分为这几个方面 属性的作用域问题,缓冲区问题,map与list映射的问题,输出多个空格不一定是/t,反转思 ...
- Mac与Widow下编译与运行java文件引入多个外部jar包
记录下,以后万一用得着呢 1.MAC环境下: 前提:在终端跳转到当前的源文件目录(cd xx), 并且配置好jdk,这里面不是重点 编译命令:注意连接用 : 号 javac -cp commons ...
- [spring]<context:component-scan/>使用
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...
- intent Filter
intent Filter 一.介绍 如果一个 Intent 请求在一片数据上执行一个动作, Android 如何知道哪个应用程序(和组件)能用来响应这个请求呢? Intent Filter就是 用来 ...
- 热备模式相关问题2.txt
--//上午测试热备模式相关问题,就是如果打开热备模式,如果中间的归档丢失,oracle在alter database end backup ;时并没有应用日志. --//虽然热备份模式文件头scn被 ...
- 20165332实验四 Android开发基础
20165332 实验四 Android程序设计 一.实验报告封面 课程:Java程序设计 班级:1653班 姓名:延亿卓 学号:20165332 指导教师:娄嘉鹏 实验日期:2018年5月14日 实 ...