Jimmy experiences a lot of stress at work these days, especially since his accident made working difficult. To relax after a hard day, he likes to walk home. To make things even nicer, his office is on one side of a forest, and his house is on the other. A nice walk through the forest, seeing the birds and chipmunks is quite enjoyable.
The forest is beautiful, and Jimmy wants to take a different route everyday. He also wants to get home before dark, so he always takes a path to make progress towards his house. He considers taking a path from A to B to be progress if there exists a route from B to his home that is shorter than any possible route from A. Calculate how many different routes through the forest Jimmy might take.

InputInput contains several test cases followed by a line containing 0. Jimmy has numbered each intersection or joining of paths starting with 1. His office is numbered 1, and his house is numbered 2. The first line of each test case gives the number of intersections N, 1 < N ≤ 1000, and the number of paths M. The following M lines each contain a pair of intersections a b and an integer distance 1 ≤ d ≤ 1000000 indicating a path of length d between intersection a and a different intersection b. Jimmy may walk a path any direction he chooses. There is at most one path between any pair of intersections.
OutputFor each test case, output a single integer indicating the number of different routes through the forest. You may assume that this number does not exceed 2147483647
Sample Input

5 6
1 3 2
1 4 2
3 4 3
1 5 12
4 2 34
5 2 24
7 8
1 3 1
1 4 1
3 7 1
7 4 1
7 5 1
6 7 1
5 2 1
6 2 1
0

Sample Output

2
4

题意:给出无向图,问从1到2有多少种走法,满足每一步到的点的最短路递减。

思路:反向求最短路,然后就是一个拓扑图,然后拓扑就好了(貌似DFS也能过,毕竟是单源起点)。

如果要拓扑怎么搞呢,如果我不管1的入度是否为0,一开始就把1点放进去,就不太好搞。  事实上,还是应该像普通的拓扑那样写,只是除了1号点初始值为1,其他都为0;   是我傻逼了。。。。下周出给学弟们,看看有人和我一样的没。

#include<bits/stdc++.h>
using namespace std;
const int maxn=;
const int inf=;
int Laxt[maxn],Next[maxn*maxn],To[maxn*maxn],ind[maxn],N,vis[maxn];
int dp[maxn],Len[maxn*maxn],From[maxn*maxn],cnt,dis[maxn];
struct in{
int dis,id;
friend bool operator<(in w,in v){ return w.dis>v.dis; }
};
vector<int>G[maxn];
void add(int u,int v,int w){
Next[++cnt]=Laxt[u]; Laxt[u]=cnt; To[cnt]=v;
Len[cnt]=w; From[cnt]=u;
}
void SPFA()
{
for(int i=;i<=N;i++) dis[i]=inf; dis[]=;
priority_queue<in>q; q.push(in{,});
while(!q.empty()){
int u=q.top().id; q.pop();
for(int i=Laxt[u];i;i=Next[i]){
int v=To[i];
if(dis[u]+Len[i]<dis[v]){
dis[v]=dis[u]+Len[i]; q.push(in{dis[v],v});
}
}
}
}
int main() {
int M,u,v,w;
while(~scanf("%d",&N)){
if(N==) break; cnt=; scanf("%d",&M);
for(int i=;i<=N;i++) Laxt[i]=dp[i]=ind[i]=vis[i]=,G[i].clear();
for(int i=;i<=M;i++){
scanf("%d%d%d",&u,&v,&w);
add(v,u,w); add(u,v,w);
}
SPFA();
for(int i=;i<=cnt;i++){
if(dis[To[i]]>dis[From[i]]){
G[To[i]].push_back(From[i]);
ind[From[i]]++;
}
}
queue<int>q; dp[]=;
for(int i=;i<=N;i++) if(ind[i]==) q.push(i),vis[i]=;
while(!q.empty()){
int u=q.front(); q.pop();
for(int i=;i<G[u].size();i++){
int v=G[u][i]; if(vis[v]) continue;
dp[v]+=dp[u]; ind[v]--;
if(ind[v]==&&vis[v]==){ q.push(v); vis[v]=;}
}
}
printf("%d\n",dp[]);
}
return ;
}

HDU - 1142:A Walk Through the Forest (拓扑排序)的更多相关文章

  1. HDU 1142 A Walk Through the Forest (记忆化搜索 最短路)

    A Walk Through the Forest Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Jav ...

  2. HDU 1142 A Walk Through the Forest (求最短路条数)

    A Walk Through the Forest 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1142 Description Jimmy exp ...

  3. HDU 1142 A Walk Through the Forest(最短路+记忆化搜索)

    A Walk Through the Forest Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Jav ...

  4. hdu 1142 A Walk Through the Forest (最短路径)

    A Walk Through the Forest Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Jav ...

  5. 题解报告:hdu 1142 A Walk Through the Forest

    题目链接:acm.hdu.edu.cn/showproblem.php?pid=1142 Problem Description Jimmy experiences a lot of stress a ...

  6. HDU 1142 A Walk Through the Forest(最短路+dfs搜索)

    A Walk Through the Forest Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Jav ...

  7. 【解题报告】HDU -1142 A Walk Through the Forest

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1142 题目大意:Jimmy要从办公室走路回家,办公室在森林的一侧,家在另一侧,他每天要采取不一样的路线 ...

  8. hdu 1142 A Walk Through the Forest

    http://acm.hdu.edu.cn/showproblem.php?pid=1142 这道题是spfa求最短路,然后dfs()求路径数. #include <cstdio> #in ...

  9. HDU 1142 A Walk Through the Forest(SPFA+记忆化搜索DFS)

    题目链接 题意 :办公室编号为1,家编号为2,问从办公室到家有多少条路径,当然路径要短,从A走到B的条件是,A到家比B到家要远,所以可以从A走向B . 思路 : 先以终点为起点求最短路,然后记忆化搜索 ...

  10. HDU 1142 A Walk Through the Forest(dijkstra+记忆化DFS)

    题意: 给你一个图,找最短路.但是有个非一般的的条件:如果a,b之间有路,且你选择要走这条路,那么必须保证a到终点的所有路都小于b到终点的一条路.问满足这样的路径条数 有多少,噶呜~~题意是搜了解题报 ...

随机推荐

  1. springMVC入门案例

    1.配置文件的web.xml <?xml version="1.0" encoding="UTF-8"?> <web-app xmlns:xs ...

  2. 回文树 Palindromic Tree

    回文树 Palindromic Tree 嗯..回文树是个什么东西呢. 回文树(或者说是回文自动机)每个节点代表一个本质不同的回文串. 首先它类似字典树,每个节点有SIGMA个儿子,表示对应的字母. ...

  3. JAVA初学者(一)

    2015-12-15 21:26:17 刚学的java  做个总结: 1.构造函数没有返回值. 2.A对象调用Q的方法,Q方法里的变量就是A的变量 Fraction add(Fraction f) 在 ...

  4. R中的sub替换函数【转】

    R中的grep.grepl.sub.gsub.regexpr.gregexpr等函数都使用正则表达式的规则进行匹配.默认是egrep的规则,也可以选用Perl语言的规则.在这里,我们以R中的sub函数 ...

  5. Kafka分布式:ZooKeeper扩展

    [ZooKeeper] 服务注册.服务发现.客户端负载均衡.Offset偏移量分布式存储. kafka使用zookeeper来实现动态的集群扩展,不需要更改客户端(producer和consumer) ...

  6. 5分钟弄懂Docker

    尽管之前久闻Docker的大名了,但是天资愚钝,对其到底是个啥东西一直摸不清,最近花了一段时间整理了一下,算是整理出一点头绪来. 官网的介绍是这样的: Docker is an open platfo ...

  7. [洛谷U62358]求导函数

    U62358 求导函数 题面 给出一个n次函数\(f(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+...+a_{1}x+a_0\)的各项系数\(a_n,a_{n-1}...a_1,a_0 ...

  8. wireshark初学者使用

    介绍 Wireshark是一款网络封包分析软件,截取网络封包,显示其封包的详细信息.日常工作中用的比较多.在使用wireshark之前须了解常用的网络协议.如:tcp,http,ip,udp等.(其实 ...

  9. 1-22-shell脚本基本应用-实验手册

    脚本应用思路 1. 确定命令操作(设计并执行任务) 2. 编写Shell脚本(组织任务过程) 3. 设置计划任务(控制时间,调用任务脚本) ------------------------------ ...

  10. [nodejs]npm国内npm安装nodejs modules终极解决方案

    此方案用于设置代理和修改镜像地址都不能解决问题使用 1.npm root 确认node模块的根文件夹,全局要加-g. osx同样是此命令,先清除缓存. npm cache clean C:\Users ...