目录

1 问题描述

2 解决方案

2.1 检验数组中元素的唯一性

2.2 模式计算

 


1 问题描述

在计算机科学中,预排序是一种很古老的思想。实际上,对于排序算法的兴趣很大程度上是因为这样一个事实:如果列表是有序的,许多关于列表的问题更容易求解。显然,对于包含了排序操作,这种算法的时间效率依赖于所选用的排序算法的效率。

对于预排序的具体思想应用请参考下文。


2 解决方案

2.1 检验数组中元素的唯一性

此问题,首先使用合并排序对数组中元素进行一次从小到大的排序,然后,依次检查数组中的元素,看是否有重复元素,如果有这说明该元素不具有唯一性,否则说明该数组中的所有元素具有元素的唯一性。

具体代码如下:

package com.liuzhen.chapter6;

public class PresortElementUniqueness {
//归并排序
public void mergeSort(int[] A){
if(A.length > 1){
int[] leftA = getHalfArray(A,0); //数组A的左半部分
int[] rightA = getHalfArray(A,1); //数组A的右半部分
mergeSort(leftA);
mergeSort(rightA);
getMerge(A,leftA,rightA);
}
} /*
* 参数A:要进行折半的数组
* 参数judge:judge == 0表示返回数组A左上半部分,judge != 0表示返回数组A的右半部分
* 函数功能:把数组按照长度均分为上半部分和下半部分
*/
public int[] getHalfArray(int[] A,int judge){
int[] result;
if(judge == 0){
result = new int[A.length/2];
for(int i = 0;i < A.length/2;i++)
result[i] = A[i];
}
else{
result = new int[A.length - A.length/2];
for(int i = 0;i < A.length - A.length/2;i++)
result[i] = A[i+A.length/2];
}
return result;
}
/*
*参数A:给定待排序数组
*参数leftA:数组A的左半部分
*参数rightA:数组的右半部分
*函数功能:返回数组A的从小到大排序
*/
public void getMerge(int[] A,int[] leftA,int[] rightA){
int i = 0; //用于计算当前遍历leftA的元素个数
int j = 0; //用于计算当前遍历rightA的元素个数
int count = 0; //用于计算当前得到按从小到大排序的A的元素个数
while(i < leftA.length && j < rightA.length){
if(leftA[i] < rightA[j]){
A[count++] = leftA[i];
i++;
}
else{
A[count++] = rightA[j];
j++;
}
}
if(i < leftA.length){
while(i < leftA.length)
A[count++] = leftA[i++];
}
if(j < rightA.length){
while(j < rightA.length)
A[count++] = rightA[j++];
}
}
//判断数组A(PS:数组A已是有序数组)中元素是否具有唯一性
public boolean judgeOnlyElement(int[] A){
for(int i = 0;i < A.length-1;i++){
if(A[i] == A[i+1])
return false;
}
return true;
} public static void main(String[] args){
PresortElementUniqueness test = new PresortElementUniqueness();
int[] A = {3,2,1,8,7,4,3,6,1,7,3,3,7,7,7,7};
test.mergeSort(A);
System.out.println("使用归并排序后数组A的结果:");
for(int i = 0;i < A.length;i++)
System.out.print(A[i]+" ");
if(test.judgeOnlyElement(A))
System.out.println("\n数组A中的元素具有唯一性");
else
System.out.println("\n数组A中的元素不具有唯一性");
int[] B = {9,8,7,6,5,4,3,2,1};
test.mergeSort(B);
System.out.println("使用归并排序后数组B的结果:");
for(int i = 0;i < B.length;i++)
System.out.print(B[i]+" ");
if(test.judgeOnlyElement(B))
System.out.println("\n数组B中的元素具有唯一性");
else
System.out.println("\n数组B中的元素不具有唯一性");
}
}

运算结果:

使用归并排序后数组A的结果:
1 1 2 3 3 3 3 4 6 7 7 7 7 7 7 8
数组A中的元素不具有唯一性
使用归并排序后数组B的结果:
1 2 3 4 5 6 7 8 9
数组B中的元素具有唯一性

2.2 模式计算

在给定的数组列表中最经常出现的一个数值称为模式。例如,对于5,1,5,7,6,5,7来说,模式是5(如果若干个不同的值都是最经常出现的,它们中的任何一个都可以看作模式。)

此处,首先对给定数组中元素使用合并排序进行从小到大排序,然后,依次遍历其中的元素,计算其中重复元素的最大个数,返回该元素的值,即为所求的模式。

具体代码如下:

package com.liuzhen.chapter6;

public class PresortElementUniqueness {
//归并排序
public void mergeSort(int[] A){
if(A.length > 1){
int[] leftA = getHalfArray(A,0); //数组A的左半部分
int[] rightA = getHalfArray(A,1); //数组A的右半部分
mergeSort(leftA);
mergeSort(rightA);
getMerge(A,leftA,rightA);
}
} /*
* 参数A:要进行折半的数组
* 参数judge:judge == 0表示返回数组A左上半部分,judge != 0表示返回数组A的右半部分
* 函数功能:把数组按照长度均分为上半部分和下半部分
*/
public int[] getHalfArray(int[] A,int judge){
int[] result;
if(judge == 0){
result = new int[A.length/2];
for(int i = 0;i < A.length/2;i++)
result[i] = A[i];
}
else{
result = new int[A.length - A.length/2];
for(int i = 0;i < A.length - A.length/2;i++)
result[i] = A[i+A.length/2];
}
return result;
}
/*
*参数A:给定待排序数组
*参数leftA:数组A的左半部分
*参数rightA:数组的右半部分
*函数功能:返回数组A的从小到大排序
*/
public void getMerge(int[] A,int[] leftA,int[] rightA){
int i = 0; //用于计算当前遍历leftA的元素个数
int j = 0; //用于计算当前遍历rightA的元素个数
int count = 0; //用于计算当前得到按从小到大排序的A的元素个数
while(i < leftA.length && j < rightA.length){
if(leftA[i] < rightA[j]){
A[count++] = leftA[i];
i++;
}
else{
A[count++] = rightA[j];
j++;
}
}
if(i < leftA.length){
while(i < leftA.length)
A[count++] = leftA[i++];
}
if(j < rightA.length){
while(j < rightA.length)
A[count++] = rightA[j++];
}
} //返回数组A(PS:数组A是有序数组)中模式
public int presortMode(int[] A){
int i = 0;
int modeFrequency = 0;
int modeValue = 0;
while(i < A.length){
int temp = i;
int count = 0;
while(temp < A.length && A[temp] == A[i]){
count++;
temp++;
}
if(count > modeFrequency){
modeFrequency = count;
modeValue = A[i];
}
i = i+count;
}
return modeValue;
}
public static void main(String[] args){
PresortElementUniqueness test = new PresortElementUniqueness();
int[] A = {3,2,1,8,7,4,3,6,1,7,3,3,7,7,7,7};
test.mergeSort(A);
System.out.println("使用归并排序后数组A的结果:");
for(int i = 0;i < A.length;i++)
System.out.print(A[i]+" ");
System.out.println("\n数组A中模式为:"+test.presortMode(A));
int[] B = {9,8,7,6,5,4,3,2,1};
test.mergeSort(B);
System.out.println("使用归并排序后数组B的结果:");
for(int i = 0;i < B.length;i++)
System.out.print(B[i]+" ");
System.out.println("\n数组B中模式为:"+test.presortMode(B));
}

运算结果:

使用归并排序后数组A的结果:
1 1 2 3 3 3 3 4 6 7 7 7 7 7 7 8
数组A中模式为:7
使用归并排序后数组B的结果:
1 2 3 4 5 6 7 8 9
数组B中模式为:1

算法笔记_036:预排序(Java)的更多相关文章

  1. 算法笔记_023:拓扑排序(Java)

    目录 1 问题描述 2 解决方案 2.1 基于减治法实现 2.2 基于深度优先查找实现 1 问题描述 给定一个有向图,求取此图的拓扑排序序列. 那么,何为拓扑排序? 定义:将有向图中的顶点以线性方式进 ...

  2. 算法笔记_018:旅行商问题(Java)

    目录 1 问题描述 2 解决方案 2.1 蛮力法 2.2 减治法 2.2.1 Johson-Trotter算法 2.2.2 基于字典序的算法   1 问题描述 何为旅行商问题?按照非专业的说法,这个问 ...

  3. 算法练习5---快速排序Java版

    基本思想:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成 ...

  4. 算法笔记_014:合并排序(Java)

    1 问题描述 给定一组数据,使用合并排序得到这组数据的非降序排列. 2 解决方案 2.1 合并排序原理简介 引用自百度百科: 合并排序是建立在归并操作上的一种有效的排序算法.该算法是采用分治法(Div ...

  5. 算法笔记_145:拓扑排序的应用(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 给出一些球,从1~N编号,他们的重量都不相同,也用1~N标记加以区分(这里真心恶毒啊,估计很多WA都是因为这里),然后给出一些约束条件,< a ...

  6. 算法笔记_129:计数排序(Java)

    目录 1 问题描述 2 解决方案 2.1比较计数排序 2.2 分布计数排序   1 问题描述 给定一组数据,请使用计数排序,得到这组数据从小到大的排序序列. 2 解决方案 2.1比较计数排序 下面算法 ...

  7. 算法练习4---冒泡排序java版

    冒泡排序的基本思想:在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒.即:每当两相邻的数比较后发现它们的排序与排序要求相反 ...

  8. 算法笔记_015:快速排序(Java)

    目录 1 问题描述 2 解决方案 2.1 快速排序原理简介 2.2 具体编码 1 问题描述 给定一组数据,使用快速排序得到这组数据的非降序排列. 2 解决方案 2.1 快速排序原理简介 引用自百度百科 ...

  9. 算法笔记_010:插入排序(Java)

    1 问题描述 给定一组数据,使用插入排序得到这组数据的非降序排列. 2 解决方案 2.1 插入排序原理简介 引用自百度百科: 有一个已经有序的数据序列,要求在这个已经排好的数据序列中插入一个数,但要求 ...

随机推荐

  1. CodeForces - 1009E Intercity Travelling

    题面在这里! 可以发现全是求和,直接拆开算贡献就好了 #include<bits/stdc++.h> #define ll long long using namespace std; c ...

  2. SSM+Maven(教程一):学习SSM框架的前提条件。

    准备工作 环境准备 1.配置jdk:http://jingyan.baidu.com/article/6dad5075d1dc40a123e36ea3.html Intelij中配置JDK:File- ...

  3. CentOS下的yum upgrade和yum update区别,没事别乱用,和Ubuntu的update不一样!

    说明:生产环境对软件版本和内核版本要求非常精确,别没事有事随便的进行yum update操作!!!!!!!!! yum update:升级所有包同时也升级软件和系统内核 yum upgrade:只升级 ...

  4. ext:grid分页,列宽度自动填满grid宽度

    var cm = new Ext.grid.ColumnModel([{      header : '编号',      dataIndex : 'id'     }, {      header ...

  5. XPath教程

    XPath 简介 XPath 是一门在 XML 文档中查找信息的语言.XPath 可用来在 XML 文档中对元素和属性进行遍历. XPath 是 W3C XSLT 标准的主要元素,并且 XQuery ...

  6. Windows系统默认调试器设置

    Windows系统默认调试器设置 1.使用运行打开drwtsn32 -i 注册华生医生到注册表如图: 2.使用运行打开drwtsn32可以进行一些常用的设置如图: 3. 注册表设置: HKEY_LOC ...

  7. NSArray与NSMutableArray 数组与可变数组的创建和遍历 复习

    1.NSArray 是一个父类,NSMUtableArray是其子类,他们构成了OC的数组. 2.NSArray的创建 NSArray * array = [[NSArray alloc]initWi ...

  8. Object-C—集合

    Obejct-C中包含了三种集合,分别是:数组.字典和集(set).       数组和C语言中的数组相似,但是OC中的数组只能存储对象,不能存储基本数据类型,如int.float.enum.stru ...

  9. 解决WPF中重载Window.OnRender函数失效问题

    今天实验一个绘图算法的时候,偶然发现重载Window.OnRender的方法是没有效果的. public partial class MainWindow : Window { public Main ...

  10. linux上SVN解决冲突的办法

    转载:http://www.aixchina.net/club/thread-25902-1-1.html 这里,先说说冲突解决. 怎么会发生冲突呢? 两个人修改了不同文件?不会有冲突,他们不相关. ...