目录

1 问题描述

2 解决方案

2.1 检验数组中元素的唯一性

2.2 模式计算

 


1 问题描述

在计算机科学中,预排序是一种很古老的思想。实际上,对于排序算法的兴趣很大程度上是因为这样一个事实:如果列表是有序的,许多关于列表的问题更容易求解。显然,对于包含了排序操作,这种算法的时间效率依赖于所选用的排序算法的效率。

对于预排序的具体思想应用请参考下文。


2 解决方案

2.1 检验数组中元素的唯一性

此问题,首先使用合并排序对数组中元素进行一次从小到大的排序,然后,依次检查数组中的元素,看是否有重复元素,如果有这说明该元素不具有唯一性,否则说明该数组中的所有元素具有元素的唯一性。

具体代码如下:

package com.liuzhen.chapter6;

public class PresortElementUniqueness {
//归并排序
public void mergeSort(int[] A){
if(A.length > 1){
int[] leftA = getHalfArray(A,0); //数组A的左半部分
int[] rightA = getHalfArray(A,1); //数组A的右半部分
mergeSort(leftA);
mergeSort(rightA);
getMerge(A,leftA,rightA);
}
} /*
* 参数A:要进行折半的数组
* 参数judge:judge == 0表示返回数组A左上半部分,judge != 0表示返回数组A的右半部分
* 函数功能:把数组按照长度均分为上半部分和下半部分
*/
public int[] getHalfArray(int[] A,int judge){
int[] result;
if(judge == 0){
result = new int[A.length/2];
for(int i = 0;i < A.length/2;i++)
result[i] = A[i];
}
else{
result = new int[A.length - A.length/2];
for(int i = 0;i < A.length - A.length/2;i++)
result[i] = A[i+A.length/2];
}
return result;
}
/*
*参数A:给定待排序数组
*参数leftA:数组A的左半部分
*参数rightA:数组的右半部分
*函数功能:返回数组A的从小到大排序
*/
public void getMerge(int[] A,int[] leftA,int[] rightA){
int i = 0; //用于计算当前遍历leftA的元素个数
int j = 0; //用于计算当前遍历rightA的元素个数
int count = 0; //用于计算当前得到按从小到大排序的A的元素个数
while(i < leftA.length && j < rightA.length){
if(leftA[i] < rightA[j]){
A[count++] = leftA[i];
i++;
}
else{
A[count++] = rightA[j];
j++;
}
}
if(i < leftA.length){
while(i < leftA.length)
A[count++] = leftA[i++];
}
if(j < rightA.length){
while(j < rightA.length)
A[count++] = rightA[j++];
}
}
//判断数组A(PS:数组A已是有序数组)中元素是否具有唯一性
public boolean judgeOnlyElement(int[] A){
for(int i = 0;i < A.length-1;i++){
if(A[i] == A[i+1])
return false;
}
return true;
} public static void main(String[] args){
PresortElementUniqueness test = new PresortElementUniqueness();
int[] A = {3,2,1,8,7,4,3,6,1,7,3,3,7,7,7,7};
test.mergeSort(A);
System.out.println("使用归并排序后数组A的结果:");
for(int i = 0;i < A.length;i++)
System.out.print(A[i]+" ");
if(test.judgeOnlyElement(A))
System.out.println("\n数组A中的元素具有唯一性");
else
System.out.println("\n数组A中的元素不具有唯一性");
int[] B = {9,8,7,6,5,4,3,2,1};
test.mergeSort(B);
System.out.println("使用归并排序后数组B的结果:");
for(int i = 0;i < B.length;i++)
System.out.print(B[i]+" ");
if(test.judgeOnlyElement(B))
System.out.println("\n数组B中的元素具有唯一性");
else
System.out.println("\n数组B中的元素不具有唯一性");
}
}

运算结果:

使用归并排序后数组A的结果:
1 1 2 3 3 3 3 4 6 7 7 7 7 7 7 8
数组A中的元素不具有唯一性
使用归并排序后数组B的结果:
1 2 3 4 5 6 7 8 9
数组B中的元素具有唯一性

2.2 模式计算

在给定的数组列表中最经常出现的一个数值称为模式。例如,对于5,1,5,7,6,5,7来说,模式是5(如果若干个不同的值都是最经常出现的,它们中的任何一个都可以看作模式。)

此处,首先对给定数组中元素使用合并排序进行从小到大排序,然后,依次遍历其中的元素,计算其中重复元素的最大个数,返回该元素的值,即为所求的模式。

具体代码如下:

package com.liuzhen.chapter6;

public class PresortElementUniqueness {
//归并排序
public void mergeSort(int[] A){
if(A.length > 1){
int[] leftA = getHalfArray(A,0); //数组A的左半部分
int[] rightA = getHalfArray(A,1); //数组A的右半部分
mergeSort(leftA);
mergeSort(rightA);
getMerge(A,leftA,rightA);
}
} /*
* 参数A:要进行折半的数组
* 参数judge:judge == 0表示返回数组A左上半部分,judge != 0表示返回数组A的右半部分
* 函数功能:把数组按照长度均分为上半部分和下半部分
*/
public int[] getHalfArray(int[] A,int judge){
int[] result;
if(judge == 0){
result = new int[A.length/2];
for(int i = 0;i < A.length/2;i++)
result[i] = A[i];
}
else{
result = new int[A.length - A.length/2];
for(int i = 0;i < A.length - A.length/2;i++)
result[i] = A[i+A.length/2];
}
return result;
}
/*
*参数A:给定待排序数组
*参数leftA:数组A的左半部分
*参数rightA:数组的右半部分
*函数功能:返回数组A的从小到大排序
*/
public void getMerge(int[] A,int[] leftA,int[] rightA){
int i = 0; //用于计算当前遍历leftA的元素个数
int j = 0; //用于计算当前遍历rightA的元素个数
int count = 0; //用于计算当前得到按从小到大排序的A的元素个数
while(i < leftA.length && j < rightA.length){
if(leftA[i] < rightA[j]){
A[count++] = leftA[i];
i++;
}
else{
A[count++] = rightA[j];
j++;
}
}
if(i < leftA.length){
while(i < leftA.length)
A[count++] = leftA[i++];
}
if(j < rightA.length){
while(j < rightA.length)
A[count++] = rightA[j++];
}
} //返回数组A(PS:数组A是有序数组)中模式
public int presortMode(int[] A){
int i = 0;
int modeFrequency = 0;
int modeValue = 0;
while(i < A.length){
int temp = i;
int count = 0;
while(temp < A.length && A[temp] == A[i]){
count++;
temp++;
}
if(count > modeFrequency){
modeFrequency = count;
modeValue = A[i];
}
i = i+count;
}
return modeValue;
}
public static void main(String[] args){
PresortElementUniqueness test = new PresortElementUniqueness();
int[] A = {3,2,1,8,7,4,3,6,1,7,3,3,7,7,7,7};
test.mergeSort(A);
System.out.println("使用归并排序后数组A的结果:");
for(int i = 0;i < A.length;i++)
System.out.print(A[i]+" ");
System.out.println("\n数组A中模式为:"+test.presortMode(A));
int[] B = {9,8,7,6,5,4,3,2,1};
test.mergeSort(B);
System.out.println("使用归并排序后数组B的结果:");
for(int i = 0;i < B.length;i++)
System.out.print(B[i]+" ");
System.out.println("\n数组B中模式为:"+test.presortMode(B));
}

运算结果:

使用归并排序后数组A的结果:
1 1 2 3 3 3 3 4 6 7 7 7 7 7 7 8
数组A中模式为:7
使用归并排序后数组B的结果:
1 2 3 4 5 6 7 8 9
数组B中模式为:1

算法笔记_036:预排序(Java)的更多相关文章

  1. 算法笔记_023:拓扑排序(Java)

    目录 1 问题描述 2 解决方案 2.1 基于减治法实现 2.2 基于深度优先查找实现 1 问题描述 给定一个有向图,求取此图的拓扑排序序列. 那么,何为拓扑排序? 定义:将有向图中的顶点以线性方式进 ...

  2. 算法笔记_018:旅行商问题(Java)

    目录 1 问题描述 2 解决方案 2.1 蛮力法 2.2 减治法 2.2.1 Johson-Trotter算法 2.2.2 基于字典序的算法   1 问题描述 何为旅行商问题?按照非专业的说法,这个问 ...

  3. 算法练习5---快速排序Java版

    基本思想:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成 ...

  4. 算法笔记_014:合并排序(Java)

    1 问题描述 给定一组数据,使用合并排序得到这组数据的非降序排列. 2 解决方案 2.1 合并排序原理简介 引用自百度百科: 合并排序是建立在归并操作上的一种有效的排序算法.该算法是采用分治法(Div ...

  5. 算法笔记_145:拓扑排序的应用(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 给出一些球,从1~N编号,他们的重量都不相同,也用1~N标记加以区分(这里真心恶毒啊,估计很多WA都是因为这里),然后给出一些约束条件,< a ...

  6. 算法笔记_129:计数排序(Java)

    目录 1 问题描述 2 解决方案 2.1比较计数排序 2.2 分布计数排序   1 问题描述 给定一组数据,请使用计数排序,得到这组数据从小到大的排序序列. 2 解决方案 2.1比较计数排序 下面算法 ...

  7. 算法练习4---冒泡排序java版

    冒泡排序的基本思想:在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒.即:每当两相邻的数比较后发现它们的排序与排序要求相反 ...

  8. 算法笔记_015:快速排序(Java)

    目录 1 问题描述 2 解决方案 2.1 快速排序原理简介 2.2 具体编码 1 问题描述 给定一组数据,使用快速排序得到这组数据的非降序排列. 2 解决方案 2.1 快速排序原理简介 引用自百度百科 ...

  9. 算法笔记_010:插入排序(Java)

    1 问题描述 给定一组数据,使用插入排序得到这组数据的非降序排列. 2 解决方案 2.1 插入排序原理简介 引用自百度百科: 有一个已经有序的数据序列,要求在这个已经排好的数据序列中插入一个数,但要求 ...

随机推荐

  1. 20162325 金立清 S2 W8 C17

    20162325 2017-2018-2 <程序设计与数据结构>第8周学习总结 教材学习内容概要 二叉查找树是一棵二叉树,对于其中的每个结点,左子树上的元素小于父结点的值,而右子树上的元素 ...

  2. [bzoj1021][SHOI2008]Debt 循环的债务 (动态规划)

    Description Alice. Bob和Cynthia总是为他们之间混乱的债务而烦恼,终于有一天,他们决定坐下来一起解决这个问题.不过,鉴别钞票的真伪是一件很麻烦的事情,于是他 们决定要在清还债 ...

  3. bzoj 2815 灭绝树

    对于一个食物网(一个DAG),一个物种死亡后,某些物种就必然死亡,求出必然死亡的是那些物种. 灭绝树的另一种含义是:“灭绝树跟节点到节点u的路径上的节点由那些原图中从根节点到节点u的所有路径中都经过了 ...

  4. bzoj 2179: FFT快速傅立叶 -- FFT

    2179: FFT快速傅立叶 Time Limit: 10 Sec  Memory Limit: 259 MB Description 给出两个n位10进制整数x和y,你需要计算x*y. Input ...

  5. 扩展gcd codevs 1213 解的个数

    codevs 1213 解的个数  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题目描述 Description 已知整数x,y满足如下面的条件: ax+by ...

  6. 洛谷P1462 通往奥格瑞玛的道路

    题目背景 在艾泽拉斯大陆上有一位名叫歪嘴哦的神奇术士,他是部落的中坚力量 有一天他醒来后发现自己居然到了联盟的主城暴风城 在被众多联盟的士兵攻击后,他决定逃回自己的家乡奥格瑞玛 题目描述 在艾泽拉斯, ...

  7. word2010图片仅仅显示边框

    有两个可能的原因: 1.图片所在段落的行间距被设置成固定值了 解决:选择所在段落,右键选择段落--弹出[段落]设置对话框--把固定行距改为"单倍行距"或其它--确定. 2.显示设置 ...

  8. Linux环境redis集群搭建

    集群后tomcat context.xml的配置 <!-- 集群配置--> <Valve className="com.radiadesign.catalina.sessi ...

  9. Android 集成新浪微博分享及授权 (上)

    2014-05-05 20:16 10663人阅读 评论(8) 收藏 举报  分类: android(33)  版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[-] 第一部分  ...

  10. arcgis Listview

    private ListView listView;@Overrideprotected void onCreate(Bundle savedInstanceState) { super.onCrea ...