[CodeForces-708E]Student's Camp
题目大意:
一个n*m的墙,被吹k天风,每块靠边的砖都有p的概率被吹掉。
如果上下两行没有直接相连的地方,我们则认为这一堵墙已经倒塌。
问最后墙不倒塌的概率(模意义)。
思路:
动态规划。
用f[i][j][k]表示到了第i层,只剩下j~k的砖头并且不倒塌的概率。
则f[i][j][k]=sum{f[i-1][l][r]|[l,r]与[j,k]有交集}*这一层只剩[l,r]的概率。
概率可以O(n)预处理,接下来要枚举i,j,k,l,r,所以是O(m^4n)的。
接下来考虑预处理sum{f[i-1][l][r]|[l,r]与[j,k]有交集}。
显然有交集的概率=总概率-没有交集的概率=总概率-r<i的概率-j<l的概率。
而这些概率都可以一边转移一边推。
这样转移的时候就不需要考虑具体的l,r,是O(m^2n)的。
数组1500^3还会爆,考虑滚动数组,勉强开下,反正还是TLE。
正解是一个很神奇的O(mn)算法。(并不是很懂)
考虑用f[i][k]表示前面的f[i][1][k]~f[i][k][k]的和。
然后预处理所有关于j的前缀和。
然后递推式就只与i,k有关了。
#include<cstdio>
#include<cctype>
typedef long long int64;
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int mod=1e9+;
const int N=,M=,K=;
void exgcd(const int &a,const int &b,int &x,int &y) {
if(!b) {
x=;
y=;
return;
}
exgcd(b,a%b,y,x);
y-=a/b*x;
}
inline int inv(const int64 &x) {
int tmp,ret;
exgcd(x,mod,ret,tmp);
return (ret+mod)%mod;
}
int f[][M];
int p[K],q[K];
int fact[K],tcaf[K];
int k;
inline int calc(const int &x) {
return (int64)fact[k]*tcaf[k-x]%mod*tcaf[x]%mod*p[x]%mod*q[k-x]%mod;
}
int main() {
int n=getint(),m=getint();
int a=getint(),b=getint();
k=getint();
fact[]=;
for(register int i=;i<=k;i++) {
fact[i]=(int64)fact[i-]*i%mod;
}
tcaf[k]=inv(fact[k]);
for(register int i=k-;~i;i--) {
tcaf[i]=(int64)tcaf[i+]*(i+)%mod;
}
p[]=q[]=;
p[]=q[]=inv(b);
p[]=(int64)p[]*a%mod;
q[]=(int64)q[]*(b-a)%mod;
for(register int i=;i<=k;i++) {
p[i]=(int64)p[i-]*p[]%mod;
q[i]=(int64)q[i-]*q[]%mod;
}
f[][m]=;
for(register int i=;i<=n;i++) {
int s1=,s2=;
for(register int j=;j<=m;j++) {
f[i&][j]=((int64)s1*(f[!(i&)][m]-f[!(i&)][m-j])-s2)%mod*calc(m-j)%mod;
s1=(s1+calc(j))%mod;
s2=(s2+(int64)f[!(i&)][j]*calc(j))%mod;
}
for(register int j=;j<=m;j++) {
f[i&][j]=(f[i&][j]+f[i&][j-])%mod;
}
}
printf("%d\n",(f[n&][m]+mod)%mod);
return ;
}
[CodeForces-708E]Student's Camp的更多相关文章
- Codeforces 708E - Student's Camp(前缀和优化 dp)
Codeforces 题目传送门 & 洛谷题目传送门 神仙 *3100,%%% 首先容易注意到 \(\forall i\in[1,m]\),第 \(i\) 行剩余的砖块一定构成一个区间,设其为 ...
- 【CF708E】Student's Camp 组合数+动态规划
[CF708E]Student's Camp 题意:有一个n*m的网格,每一秒钟,所有左面没有格子的格子会有p的概率消失,右面没有格子的格子也会有p的概率消失,问你t秒钟后,整个网格的上边界和下边界仍 ...
- Student's Camp CodeForces - 708E (dp,前缀和优化)
大意: $n$行$m$列砖, 白天左侧边界每块砖有$p$概率被摧毁, 晚上右侧边界有$p$概率被摧毁, 求最后上下边界连通的概率. 记${dp}_{i,l,r}$为遍历到第$t$行时, 第$t$行砖块 ...
- codeforces 672A A. Summer Camp(水题)
题目链接: A. Summer Camp time limit per test 1 second memory limit per test 256 megabytes input standard ...
- [Codeforces708E]Student's Camp
Problem 一个n*m块砖的建筑,一共k天,每天风从两边吹,吹掉砖的概率为p,反之为1-p,求最终建筑没有倒塌的可能性(上层与下层有交集且每一层都有砖) Solution 首先,我们可以预处理出p ...
- Codeforces 1167c(ccpc wannafly camp day1) News Distribution 并查集模板
题目: In some social network, there are nn users communicating with each other in mm groups of friends ...
- CF708E Student's Camp
麻麻我会做*3100的计数了,我出息了 考虑朴素DP我们怎么做呢. 设\(f_{i,l,r}\)为第\(i\)层选择\(l,r\)的依旧不倒的概率. \(q(l,r)\)表示经历了\(k\)天后,存活 ...
- Codeforces Round #588 (Div. 2) D. Marcin and Training Camp(思维)
链接: https://codeforces.com/contest/1230/problem/D 题意: Marcin is a coach in his university. There are ...
- Codeforces Round #335 (Div. 2) D. Lazy Student 构造
D. Lazy Student Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/606/probl ...
随机推荐
- 浅谈卡特兰数(Catalan number)的原理和相关应用
一.卡特兰数(Catalan number) 1.定义 组合数学中一个常出现在各种计数问题中出现的数列(用c表示).以比利时的数学家欧仁·查理·卡特兰的名字来命名: 2.计算公式 (1)递推公式 c[ ...
- hihoCoder #1175 : 拓扑排序·二
题目链接:http://hihocoder.com/problemset/problem/1175 代码实现如下: #include <queue> #include <cstdio ...
- 48、面向对象中super的作用?
什么是super? super() 函数是用于调用父类(超类)的一个方法. super 是用来解决多重继承问题的,直接用类名调用父类方法在使用单继承的时候没问题,但是如果使用多继承,会涉及到查找顺序( ...
- wifi钓鱼 强势拿你的wifi密码
钓鱼wifi 首先设一个场景!!! 如何得到一个免费的wifi 有人可能做过抓包跑包的方法或者跑pin码的方法然而这些方法可能会耗去你大量的时间(我曾经跑包花了一天的时间 跑pin码花了一晚上)感 ...
- 初学Memcached安装及使用【转】
1.yum install memcached安装memecached 2.chkconfig memcached on设置memcached开机启动 3.service memcached star ...
- 15个你不得不知道的Chrome dev tools的小技巧
转载自:https://www.imooc.com/article/2559 谷歌浏览器如今是Web开发者们所使用的最流行的网页浏览器.伴随每六个星期一次的发布周期和不断扩大的强大的开发功能,Chro ...
- 剑指offer算法题
数组中只出现一次的数字(一个整型数组里除了两个数字之外,其他的数字都出现了两次.请写程序找出这两个只出现一次的数字): 解法在于位运算中的异或,直接异或可以得到这两个数的异或,按照最后的有效数字位可以 ...
- centos上git搭建
1 git的安装需要一些包: yum install curl-devel expat-devel gettext-devel openssl-devel zlib-devel gcc perl-Ex ...
- Tutorial 5: Relationships & Hyperlinked APIs
转载自:http://www.django-rest-framework.org/tutorial/5-relationships-and-hyperlinked-apis/ Tutorial 5: ...
- 以应用带动SDN发展(CDN峰会 工信部杨崑)(转)
以应用带动SDN发展(CDN峰会 工信部杨崑) SDNAP推荐:这是在亚太全媒体SDN峰会由工信部研究院秘书长杨崑做的关于SDN的一个演讲,本人认为主讲者通过对整 个信息服务体系的精简归纳总结,剥 ...